首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this paper an adaptive parallel multigrid method and an application example for the 2D incompressible Navier–Stokes equations are described. The strategy of the adaptivity in the sense of local grid refinement in the multigrid context is the multilevel adaptive technique (MLAT) suggested by Brandt. The parallelization of this method on scalable parallel systems is based on the portable communication library CLIC and the message-passing standards: PARMACS, PVM and MPI. The specific problem considered in this work is a two-dimensional hole pressure problem in which a Poiseuille channel flow is disturbed by a cavity on one side of the channel. Near geometric singularities a very fine grid is needed for obtaining an accurate solution of the pressure value. Two important issues of the efficiency of adaptive parallel multigrid algorithms, namely the data redistribution strategy and the refinement criterion, are discussed here. For approximate dynamic load balancing, new data in the adaptive steps are redistributed into distributed memories in different processors of the parallel system by block remapping. Among several refinement criteria tested in this work, the most suitable one for the specific problem is that based on finite-element residuals from the point of view of self-adaptivity and computational efficiency, since it is a kind of error indicator and can stop refinement algorithms in a natural way for a given tolerance. Comparisons between different global grids without and with local refinement have shown the advantages of the self-adaptive technique, as this can save computer memory and speed up the computing time several times without impairing the numerical accuracy. © 1997 By John Wiley & Sons, Ltd. Int. J. Numer. Methods Fluids 24, 875–892, 1997.  相似文献   

2.
In this paper a parallel multigrid finite volume solver for the prediction of steady and unsteady flows in complex geometries is presented. For the handling of the complexity of the geometry and for the parallelization a unified approach connected with the concept of block-structured grids is employed. The parallel implementation is based on grid partitioning with automatic load balancing and follows the message-passing concept, ensuring a high degree of portability. A high numerical efficiency is obtained by a non-linear multigrid method with a pressure correction scheme as smoother. By a number of numerical experiments on various parallel computers the method is investigated with respect to its numerical and parallel efficiency. The results illustrate that the high performance of the underlying sequential multigrid algorithm can largely be retained in the parallel implementation and that the proposed method is well suited for solving complex flow problems on parallel computers with high efficiency.  相似文献   

3.
The full adaptive multigrid method is based on the tri-tree grid generator. The solution of the Navier–Stokes equations is first found for a low Reynolds number. The velocity boundary conditions are then increased and the grid is adapted to the scaled solution. The scaled solution is then used as a start vector for the multigrid iterations. During the multigrid iterations the grid is first recoarsed a specified number of grid levels. The solution of the Navier–Stokes equations with the multigrid residual as right-hand side is smoothed in a fixed number of Newton iterations. The linear equation system in the Newton algorithm is solved iteratively by CGSTAB preconditioned by ILU factorization with coupled node fill-in. The full adaptive multigrid algorithm is demonstr ated for cavity flow. © 1997 by John Wiley & Sons, Ltd. Int. j. numer. methods fluids 24: 1037ndash;1047, 1997.  相似文献   

4.
The tri-tree algorithm for refinements and recoarsements of finite element grids is explored. The refinement–recoarsement algorithm not only provides an accurate solution in certain parts of the grid but also has a major influence on the finite element equation system itself. The refinements of the grid lead to a more symmetric and linear equation matrix. The recoarsements will ensure that the grid is not finer than is necessary for preventing divergence in an iterative solution procedure. The refinement–recoarsement algorithm is a dynamic procedure and the grid is adapted to the instant solution. In the tri-tree multigrid algorithm the solution from a coarser grid is scaled relatively to the increase in velocity boundary condition for the finer grid. In order to have a good start vector for the solution of the finer grid, the global Reynolds number or velocity boundary condition should not be subject to large changes. For each grid and velocity solution the element Reynolds number is computed and used as the grid adaption indicator during the refinement–recoarsement procedure. The iterative tri-tree multigrid method includes iterations with respect to the grid. At each Reynolds number the same boundary condition s are applied and the grid is adapted to the solution iteratively until the number of unknowns and elements in the grid becomes constant. In the present paper the following properties of the tri-tree algorithm are explored: the influence of the increase in boundary velocities and the size of the grid adaption indicator on the amount of work for solving the equations, the number of linear iterations and the solution error estimate between grid levels. The present work indicates that in addition to the linear and non-linear iterations, attention should also be given to grid adaption iterations. © 1997 by John Wiley & Sons, Ltd.  相似文献   

5.
Discretization of the Stokes equations produces a symmetric indefinite system of linear equations. For stable discretizations a variety of numerical methods have been proposed that have rates of convergence independent of the mesh size used in the discretization. In this paper we compare the performance of four such methods, namely variants of the Uzawa, preconditioned conjugate gradient, preconditioned conjugate residual and multigrid methods, for solving several two-dimensional model problems. The results indicate that multigrid with smoothing based on incomplete factorization is more efficient than the other methods, but typically by no more than a factor of two. The conjugate residual method has the advantage of being independent of iteration parameters.  相似文献   

6.
An unfactored implicit time-marching method for the solution of the unsteady two-dimensional Reynolds-averaged thin layer Navier–Stokes equations is presented. The linear system arising from each implicit step is solved by the conjugate gradient squared (CGS) method with preconditioning based on an ADI factorization. The time-marching procedure has been used with a fast transfinite interpolation method to regenerate the mesh at each time step in response to the motion of the aerofoil. The main test cases examined are from the AGARD aeroelastic configurations and involve aerofoils oscillating rigidly in pitch. These test cases have been used to investigate the effect of various parameters, such as CGS tolerance and laminar/turbulent transition location, on the accuracy and efficiency of the method. Comparisons with available experimental data have been made for these cases. In order to illustrate the application of the mesh generator and flow solver to more general flows where the aerofoil deforms, results for an NACA 0012 aerofoil with an oscillating trailing edge flap are also shown.  相似文献   

7.
An unstructured grid, finite volume method is presented for the solution of two-dimensional viscous, incompressible flow. The method is based on the pressure-correction concept implemented on a semi-staggered grid. The computational procedure can handle cells of arbitrary shape, although solutions presented herein have been obtained only with meshes of triangular and quadrilateral cells. The discretization of the momentum equations is effected on dual cells surrounding the vertices of primary cells, while the pressure-correction equation applies to the primary-cell centroids and represents the conservation of mass across the primary cells. A special interpolation scheme s used to suppress pressure and velocity oscillations in cases where the semi-staggered arrangement does not ensure a sufficiently strong coupling between pressure and velocity to avoid such oscillations. Computational results presented for several viscous flows are shown to be in good agreement with analytical and experimental data reported in the open literature.  相似文献   

8.
An iterative adaptive equation multigrid solver for solving the implicit Navier–Stokes equations simultaneously with tri-tree grid generation is developed. The tri-tree grid generator builds a hierarchical grid structur e which is mapped to a finite element grid at each hierarchical level. For each hierarchical finite element multigrid the Navier–Stokes equations are solved approximately. The solution at each level is projected onto the next finer grid and used as a start vector for the iterative equation solver at the finer level. When the finest grid is reached, the equation solver is iterated until a tolerated solution is reached. The iterative multigrid equation solver is preconditioned by incomplete LU factorization with coupled node fill-in. The non-linear Navier–Stokes equations are linearized by both the Newton method and grid adaption. The efficiency and behaviour of the present adaptive method are compared with those of the previously developed iterative equation solver which is preconditioned by incomplete LU factorization with coupled node fill-in.  相似文献   

9.
An agglomeration multigrid strategy is developed and implemented for the solution of three-dimensional steady viscous flows. The method enables convergence acceleration with minimal additional memory overhead and is completely automated in that it can deal with grids of arbitrary construction. The multigrid technique is validated by comparing the delivered convergence rates with those obtained by a previously developed overset-mesh multigrid approach and by demonstrating grid-independent convergence rates for aerodynamic problems on very large grids. Prospects for further increases in multigrid efficiency for high-Reynolds-number viscous flows on highly stretched meshes are discussed.  相似文献   

10.
本文利用动力系统分叉理论,给了非线性马休方程的一种新的解法,并得到了整个系统参数平面上的不同参数域中分叉图各种可能的拓扑结构,利用本文所给的方法研究了欧拉动弯曲问题,得到了一些新的结果。  相似文献   

11.
An iterative adaptive equation solver for solving the implicit Stokes equations simultaneously with tri-tree grid generation is developed. The tri-tree grid generator builds a hierarchical grid structure which is mapped to a finite element grid at each hierarchical level. For each hierarchical finite element grid the Stokes equations are solved. The approximate solution at each level is projected onto the next finer grid and used as a start vector for the iterative equation solver at the finer level. When the finest grid is reached, the equation solver is iterated until a tolerated solution is reached. In order to reduce the overall work, the element matrices are integrated analytically beforehand. The efficiency and behaviour of the present adaptive method are compared with those of the previously developed iterative equation solver which is preconditioned by incomplete LU factorization with coupled node fill-in. The efficiency of the incomplete coupled node fill-in preconditioner is shown to be largely dependent on the global node numbering. The preconditioner is therefore tested for the natural node ordering of the tri-tree grid generator and for different ways of sorting the nodes.  相似文献   

12.
An adaptive finite volume method for the simulation of time-dependent, viscous flow is presented. The Navier–Stokes equations are discretized by central schemes on unstructured grids and solved by an explicit Runge–Kutta method. The essential topics of the present study are a new concept for a local Runge–Kutta time-stepping scheme, called multisequence Runge–Kutta, which reduces the severe stability restriction in unsteady problems, a common grid generation and adaptation procedure and the application of dynamic grids for capturing moving flow structures. Results are presented for laminar, separated flow around an aerofoil with a flap.  相似文献   

13.
IntroductionForcomputationoftheviscouscompressibleflowstheNavier_Stokesequationsaregenerallyrepresentedintheconservationlawformasahyperbolicsystem .Lackingthemathematicaltooltoanalyzethisnonlinearsystem ,thenumericalmethodsusedinsolvingthenonlinearhype…  相似文献   

14.
组合壳体的弹塑性有限元分析   总被引:2,自引:0,他引:2  
本文采用文[1]提出的曲壳单元,根据Prandtl-Reuss塑性流动理论和Mises等向强化屈服准则,建立了壳体的弹塑性有限元格式,同时按照罚单元原理建立了组合壳体的连接条件,编制了相应的计算程序,具体计算了带接管球壳和等径三通等算例,取得了较好的结果。  相似文献   

15.
详细地叙述了模拟三维高超声速电离空气化学非平衡粘性流全流场(前体和底部近尾迹)的数值方法,化学反应粘性流求解是基于带有化学源项的N-S方程的守恒形式,总的连续方程由组元守恒方程组所代替.对于高温电离空气流动,存在如下7个主要组元,它们依次为N_2,O_2,NO,NO ̄+,N,O和e ̄-.研究发展了求解完全耦合的,与时间相关的偏微分方程组的数值方法.利用一类新的迎风TVD激波捕捉有限差分格式求解守恒形式的控制方程组,对高超声速层流有攻角钝锥体绕流流场,在非催化壁条件下、对包括底部近尾迹在内的全流场各参数,如组元浓度,电子密度和温度,以及物面压力分布和热流率分布得出了计算结果.对化学反应气体和完全气体模型的计算结果进行了比较,计算的流场电子密度与飞行实验结果符合很好.  相似文献   

16.
冯志刚 《力学季刊》1993,14(4):41-47
本文是得新提出的一种微分方程的新解法,最优化样条函数康托诺维奇加权残值法。来求解非线性微分方程。该法把优化理论引入微分方程的数值解法,揉最优化算法,加权残值法,样条函数法,康托诺维奇法于一体,具有精度高、收敛快、易于处理各种边界条件的优点,文中有基于原始微分方程的算例,对流体力学中Burgers方程的成功求解,展示了该法的应用前景。  相似文献   

17.
By using the analytic theory of hypersingular integral equations in three-dimensional fracture mechanics, the interactions between two parallel planar cracksunder arbitrary loads are investigated. According to the concepts and method of finite-part integrals, a set of hypersingular integral equations is derived, in which theunknown functions are the displacement discontinuities of the crack surfaces. Then itsnumerical method is proposed by combining the finite-part integral method with theboundary element method. Based on the above results, the method for calculating thestress intensity factors with the displacement discontinuities of the crack surfaces ispresented. Finally, several typical examples are calculated and the numerical resultsare satisfactory.  相似文献   

18.
本文利用三维断裂力学的超奇异积分方程求解理论,对三维无限体中两平行平片裂纹在任意载荷作用下的相互干扰问题作了研究。首先导出了以裂纹面移间断(位借)为未知函数的超奇异积分方程组,然后为其建立了有限积分边界元法;在此基础上,讨论用了裂纹面位移间断计算应力强度因子的方法,最后用此计算了两平行平片裂纹的相对位置对裂前沿应力强度因子的影响,其数值结果令人满意。  相似文献   

19.
本文依非线性问题的积分方程组,按迭代法得出一般迭代表达式.由此,任意次迭代解的所有待定系数可用计算机计算,使研究复杂的非路性问题成为可能.  相似文献   

20.
张瑞萍  孙家驹 《力学季刊》1996,17(3):233-238
本文用摄动法导出了弦的非线性振动的K-dV方程,讨论了只有耗散和色散的特殊情况,然后详细讨论了K-dV方程的孤波解的性态,并给出了弦的非线性振动孤波的主要特征。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号