首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Although there are many examples of acetate complexes, acetamide complexes are virtually unknown. A side‐by‐side comparison in (acetato‐κ2O,O′)(1,4,7,10‐tetramethyl‐1,4,7,10‐tetraazacyclododecane‐κ4N)nickel(II) hexafluoridophosphate, [Ni(C2H3O2)(C12H28N4)]PF6, (1), and (acetamidato‐κ2O,O′)(1,4,7,10‐tetramethyl‐1,4,7,10‐tetraazacyclododecane‐κ4N)nickel(II) hexafluoridophosphate, [Ni(C2H4NO)(C12H28N4)]PF6, (2), shows the steric equivalence between these two ligands, suggesting that acetamide could be considered as a viable acetate replacement for electronic tuning.  相似文献   

2.
The EI-mass spectra of nine η3-allyl bromo(ligand)nickel(II) complexes of the type C3H5NiBrL (L = monodentate neutral ligand) were recorded. The predominating fragmentation path is the reversed formation reaction leading to the ligand L and bis(η3-allylnickel(II) bromide), respectively. The relative strength of the NiL bond derived from the MS data is compared with the ligand's influence on the catalytic activity and selectivity of the corresponding η3-allylbis(ligand) complexes [C3H5NiL2]PF6 for the 1,4-polymerisation of 1,3-butadiene.  相似文献   

3.
The structures of a series of four‐coordinate nickel(II) complexes of the form [Ni(sacsac)L] PF6 (sacsac = pentane‐2,4‐di­thione anion; L = (Ph2P)2(CH2)n, n = 1,2,3) have beendetermined. These are [bis­(di­phenyl­phosphino)­methane](pentane‐2,4‐di­thionato‐S,S′)­nickel(II) hexa­fluoro­phosphate, [Ni(C25H22P2)(C5H7S2)]PF6, [1,2‐bis­(di­phenylphosphino)­ethane](pentane‐2,4‐di­thionato–S,S′)­nickel(II) hexa­fluoro­phosphate, [Ni(C26H24P2)(C5H7S2)]PF6, and [1,3‐bis­(di­phenyl­phosphino)­propane](pentane‐2,4‐di­thionato‐S,S′)­nickel(II) hexa­fluoro­phosphate, [Ni(C27H26P2)(C5H7S2)]PF6. All have a distorted square‐planar arrangement about Ni with angles around Ni varying with the length of the hydro­carbon chain.  相似文献   

4.
A novel, useful in situ synthesis for NHC nickel allyl halide complexes [Ni(NHC)(η3-allyl)(X)] starting from [Ni(CO)4], NHC and allyl halides is presented. The reaction of [Ni(CO)4] with (i) one equivalent of the corresponding NHC and (ii) with an excess of the corresponding allyl chloride at room temperature leads with elimination of carbon monoxide to complexes of the type [Ni(NHC)(η3-allyl)(X)]. This approach was used to synthesize the complexes [Ni(tBu2Im)(η3-H2C -C (Me)-C H2)(Cl)] ( 2 ), [Ni(iPr2ImMe)(η3-H2C -C (Me)-C H2)(Cl)] ( 3 ), [Ni(iPr2Im)(η3-H2C -C (Me)-C H2)(Cl)] ( 4 ), [Ni(iPr2Im)(η3-H2C -C (H)-C (Me)2)(Br)] ( 5 ), [Ni(Me2ImMe)(η3-H2C -C (Me)-C H2)(Cl)] ( 6 ), and [Ni(EtiPrImMe)(η3-H2C -C (Me)-C H2)(Cl)] ( 7 ). The complexes 1 to 7 were characterized using NMR and IR spectroscopy and elemental analysis, and the molecular structures are provided for 2 and 7 . The allyl nickel complexes 1 – 7 are stereochemically non-rigid in solution due to (i) NHC rotation about the nickel-carbon bond, (ii) allyl rotation about the Ni–η3-allyl axis and (iii) π–σ–π allyl isomerization processes. The allyl halide complexes can be methylated as was demonstrated by the methylation of a number of the complexes [Ni(NHC)(η3-allyl)(X)] with methylmagnesium chloride or methyllithium, which led to isolation of the complexes [Ni(Me2Im)(η3-H2C -C (Me)-C H2)(Me)] ( 8 ), [Ni(tBu2Im)(η3-H2C -C (Me)-C H2)(Me)] ( 9 ), [Ni(iPr2ImMe)(η3-H2C -C (Me)-C H2)(Me)] ( 10 ), [Ni(iPr2Im)(η3-H2C -C (Me)-C H2)(Me)] ( 11 ), [Ni(iPr2Im)(η3-H2C -C (H)-C (Me)2)(Me)] ( 12 ), and [Ni(EtiPrImMe)(η3-H2C -C (Me)-C H2)(Me)] ( 13 ). These complexes were fully characterized including X-ray molecular structures for 10 and 11 .  相似文献   

5.
A mechanism is proposed for the polymerization of syndiotactic 1,2-polybutadiene (s-PB) with soluble cobalt-organoaluminum-CS2. The proposed active species have structures which consist of side-on coordination of CS2 to cobalt, anti-π-allyl growing end, cisoid bidentate coordination of butadiene, and activation by complex formation with organoaluminum at the nonbonded sulfur of the coordinated CS2. This proposal is based on findings for the aluminum-free catalyst Co(C4H6)(C8H13)-CS2. It is tentatively interpreted that syndiotactic 1,2 polymerization proceeds under the influence of the side-on coordinated CS2, by which the reactivity between the terminal carbons of butadiene and the C3 of the π-allyl end is enhanced.  相似文献   

6.
Benzyl Nickel(II) Complexes and their Reactions By the oxydative addition of p-substituted benzyl chlorides to (Ph3P)2Ni(C2H4) at ?20°C the violet nickel(II) complexes (Ph3P)2Ni(p-CH2C6H4R)Cl (R ? CN, COOH, CH3, Cl) are, formed. In water containing solutions the carbonic acid (Ph3P)2Ni(p-CH2C6H4COOH)Cl is rearranged to the corresponding p-methylbenzoate. With carbon dioxide the complexes (Ph3P)2Ni(p? CH2C6H4R)Cl react like Grignard compounds. Diphenyl ethine and butadien-1,3 are inserted in the Ni—C bond at room temperature. Substituted nickel-σ-vinyl or π-allyl complexes are obtained. The reactivity of the nickel-σ-benzyl compounds is compared with that of other nickel(II)-alkyl compounds.  相似文献   

7.
Although it has not proved possible to crystallize the newly prepared cyclam–methylimidazole ligand 1‐[(1‐methyl‐1H‐imidazol‐2‐yl)methyl]‐1,4,8,11‐tetraazacyclotetradecane (LIm1), the trans and cis isomers of an NiII complex, namely trans‐aqua{1‐[(1‐methyl‐1H‐imidazol‐2‐yl)methyl]‐1,4,8,11‐tetraazacyclotetradecane}nickel(II) bis(perchlorate) monohydrate, [Ni(C15H30N6)(H2O)](ClO4)2·H2O, (1), and cis‐aqua{1‐[(1‐methyl‐1H‐imidazol‐2‐yl)methyl]‐1,4,8,11‐tetraazacyclotetradecane}nickel(II) bis(perchlorate), [Ni(C15H30N6)(H2O)](ClO4)2, (2), have been prepared and structurally characterized. At different stages of the crystallization and thermal treatment from which (1) and (2) were obtained, a further two compounds were isolated in crystalline form and their structures also analysed, namely trans‐{1‐[(1‐methyl‐1H‐imidazol‐2‐yl)methyl]‐1,4,8,11‐tetraazacyclotetradecane}(perchlorato)nickel(II) perchlorate, [Ni(ClO4)(C15H30N6)]ClO4, (3), and cis‐{1,8‐bis[(1‐methyl‐1H‐imidazol‐2‐yl)methyl]‐1,4,8,11‐tetraazacyclotetradecane}nickel(II) bis(perchlorate) 0.24‐hydrate, [Ni(C20H36N6)](ClO4)2·0.24H2O, (4); the 1,8‐bis[(1‐methyl‐1H‐imidazol‐2‐yl)methyl]‐1,4,8,11‐tetraazacyclotetradecane ligand is a minor side product, probably formed in trace amounts in the synthesis of LIm1. The configurations of the cyclam macrocycles in the complexes have been analysed and the structures are compared with analogues from the literature.  相似文献   

8.
A nickel/N-heterocyclic carbene (NHC) catalytic system has been developed for the borylation of aryl sulfoxides with B2(neop)2 (neop=neopentyl glycolato). A wide range of aryl sulfoxides with different electronic and steric properties were converted into the corresponding arylboronic esters in good yields. The regioselective borylation of unsymmetric diaryl sulfoxides was also feasible leading to borylation of the sterically less encumbered aryl substituent. Competition experiments demonstrated that an electron-deficient aryl moiety reacts preferentially. The origin of the selectivity in the Ni-catalyzed borylation of electronically biased unsymmetrical diaryl sulfoxide lies in the oxidative addition step of the catalytic cycle, as oxidative addition of methoxyphenyl 4-(trifluoromethyl)phenyl sulfoxide to the Ni(0) complex occurs selectively to give the structurally characterized complex trans-[Ni(ICy)2(4-CF3-C6H4){(SO)-4-MeO-C6H4}] 4 . For complex 5 , the isomer trans-[Ni(ICy)2(C6H5)(OSC6H5)] 5 - I was structurally characterized in which the phenyl sulfinyl ligand is bound via the oxygen atom to nickel. In solution, the complex trans-[Ni(ICy)2(C6H5)(OSC6H5)] 5 - I is in equilibrium with the S-bonded isomer trans-[Ni(ICy)2(C6H5)(SOC6H5)] 5 , as shown by NMR spectroscopy. DFT calculations reveal that these isomers are separated by a mere 0.3 kJ/mol (M06/def2-TZVP-level of theory) and connected via a transition state trans-[Ni(ICy)2(C6H5)(η2-{SO}-C6H5)], which lies only 10.8 kcal/mol above 5 .  相似文献   

9.
The complex cation in [4,5-di­hydro-4,4,5,5-tetra­methyl-2-(2-pyridyl-κN)­imidazol-1-oxyl 3-oxide-κO3](nitrato-κ2O,O′)(N,N,N′,N′-tetra­methyl-1,2-ethanedi­am­ine-κ2N,N′)­nickel(II) hexafluorophosphate dichloromethane solvate, [Ni(NO3)(C6H16N2)(C12H16N3O2)]PF6·CH2Cl2, is the first example of a nitro­nyl nitro­xide complex of a transition metal ion having d electrons in which nitrate is coordinated as a bidentate ligand. Owing to the smaller steric requirement of NO3, the Ni—­O(nitro­xide) bond length [2.014 (2) Å] is remarkably shorter than that in the corresponding ­β-­diketonate complexes [2.052 (4)–2.056 (2) Å].  相似文献   

10.
The structure of a nickel(II) complex, trans-[Ni(C6Cl5)(PMe2Ph)2{C(OMe)Me}]BF4, containing the simplest alkyl(alkoxy)carbene ligand has been determined by X-ray crystallography (R = 0.091). The geometry around the nickel atom is square-planar. The comparatively short NiC(1) bond length of 1.843(10) Å showed the presence of π-bonding in the nickel-carbene bond.  相似文献   

11.
Accurate values for the energies of stacking interactions of nickel‐ and copper‐based six‐membered chelate rings with benzene are calculated at the CCSD(T)/CBS level. The results show that calculations made at the ωB97xD/def2‐TZVP level are in excellent agreement with CCSD(T)/CBS values. The energies of [Cu(C3H3O2)(HCO2)] and [Ni(C3H3O2)(HCO2)] chelates stacking with benzene are ?6.39 and ?4.77 kcal mol?1, respectively. Understanding these interactions might be important for materials with properties that are dependent on stacking interactions.  相似文献   

12.
Photolysis of diphenylketene in the presence of pentacarbonyliron yields the π-allyl/σ-acyl type compound [η31-(C6H5)2CCO)Fe(CO)3 (III) the molecular structure of which has been established by means of X-ray diffraction techniques. Metal-centered carboncarbon bond breaking and bond making in III is evident from 13CO labelling and crossover experiments. The dinuclear compound IV, structurally characterized by the π-allyl/σ-aryl/π-olefin hydrocarbon ligand CH(C6H4)C6H5, is formed upon irreversible decarbonylation of the ketene precursor III.  相似文献   

13.
The reaction of NiCl2 with 1,3‐bis[(diphenylphosphanyl)methyl]hexahydropyrimidine in the presence of 2,6‐dimethylphenyl isocyanide and KPF6 afforded a new pentacoordinated PCP pincer NiII complex, namely {1,3‐bis[(diphenylphosphanyl)methyl]hexahydropyrimidin‐2‐yl‐κN2}(2,6‐dimethylphenyl isocyanide‐κC)nickel(II) hexafluoridophosphate 0.70‐hydrate, [Ni(C9H9N)(C30H30ClN2P2)]PF6·0.7H2O or [NiCl{C(NCH2PPh2)2(CH2)3‐κ3P,C,P′}(Xylyl‐NC)]PF6·0.7H2O, in very good yield. Its X‐ray structure showed a distorted square‐pyramidal geometry and the compound does not undergo dissociation in solution, as shown by variable‐temperature NMR and UV–Vis studies. Density functional theory (DFT) calculations provided an insight into the bonding; the nickel dsp2‐hybridized orbitals form the basal plane and the nearly pure p orbital forms the axial bond. This is consistent with the NBO (natural bond orbital) analysis of analogous nickel(II) complexes.  相似文献   

14.
Potassium salts of the new 2-phosphinomethyl-1H-pyrroles, K[R2PCH2C4H3N] (R = Ph, Cy) react with (η3-allyl)nickel bromide to give the chelate complexes (R2PCH2C4H3N)Ni(allyl), whereas the sterically hindered 2-diphenylphosphinomethyl-5-t-butyl-1H-pyrrole and (η3-allyl)nickel bromide afford a phosphine adduct (HNC4H2-5-But-2-CH2PPh2)Ni(allyl)Br which is stabilized by an intramolecular NHBr hydrogen bond. The addition of B(C6F5)3 to (R2PCH2C4H3N)Ni(allyl) leads to an electrophilic attack in 5-position of the pyrrole ring, to give the thermally unstable zwitterions (η3-C3H5)Ni[NC4H3(2-CH2PR2)-5-B(C6F5)3] which catalyse the isomerisation of 1-hexene. The addition of B(C6F5)3 is reversible, and slow ligand rearrangement to Ni(N-P)2 products appears to be the major catalyst deactivation pathway.  相似文献   

15.
Two new NiII complexes involving the ancillary ligand bis[(pyridin‐2‐yl)methyl]amine (bpma) and two different carboxylate ligands, i.e. homophthalate [hph; systematic name: 2‐(2‐carboxylatophenyl)acetate] and benzene‐1,2,4,5‐tetracarboxylate (btc), namely catena‐poly[[aqua{bis[(pyridin‐2‐yl)methyl]amine‐κ3N,N′,N′′}nickel(II)]‐μ‐2‐(2‐carboxylatophenyl)aceteto‐κ2O:O′], [Ni(C9H6O4)(C12H13N3)(H2O)]n, and (μ‐benzene‐1,2,4,5‐tetracarboxylato‐κ4O1,O2:O4,O5)bis(aqua{bis[(pyridin‐2‐yl)methyl]amine‐κ3N,N′,N′′}nickel(II)) bis(triaqua{bis[(pyridin‐2‐yl)methyl]amine‐κ3N,N′,N′′}nickel(II)) benzene‐1,2,4,5‐tetracarboxylate hexahydrate, [Ni2(C10H2O8)(C12H13N3)2(H2O)2]·[Ni(C12H13N3)(H2O)3]2(C10H2O8)·6H2O, (II), are presented. Compound (I) is a one‐dimensional polymer with hph acting as a bridging ligand and with the chains linked by weak C—H...O interactions. The structure of compound (II) is much more complex, with two independent NiII centres having different environments, one of them as part of centrosymmetric [Ni(bpma)(H2O)]2(btc) dinuclear complexes and the other in mononuclear [Ni(bpma)(H2O)3]2+ cations which (in a 2:1 ratio) provide charge balance for btc4− anions. A profuse hydrogen‐bonding scheme, where both coordinated and crystal water molecules play a crucial role, provides the supramolecular linkage of the different groups.  相似文献   

16.
The reaction of 2,4‐diferrocenyl‐1,3‐dithiadiphosphetane 2,4‐disulfide [FcPS(μ‐S)]2 [Fc = Fe(η5‐C5H4)(η5‐C5H5)] with alcohols ROH gave the corresponding ferrocenyldithiophosphonic acids [FcPS(OR)(SH)], which were treated in situ with Ni(CH3COO)2·4H2O in acetic acid to yield the square‐planar heterobimetallic trinuclear complexes [{FcP(OR)S2}2Ni] (R = Me ( 1 ), Et ( 2 ), Pri ( 3 ), Bus ( 4 ) and Bui ( 5 )). Compounds 1‐5 were characterized by elemental analysis, MS, NMR (1H, 13C and 31P), IR spectroscopy, and 2‐5 also by X‐ray crystallography. Cyclovoltammetric studies on the heterobimetallic nickel(II) complexes 1‐5 showed irreversible reduction to unstable nickel(I) complexes and an irreversible two‐electron oxidation of the sulfur‐containing nickel fragments, followed by a reversible one‐electron oxidation of the two ferrocenyl groups.  相似文献   

17.
The title compound, [Ni2(C5H5)(C10H15)(C12H8)] or [Ni(C10H15){Ni(C5H5)(C12H8)}], is a rare example (and the first obtained from nickelafluorenyllithium) of an analogue of nickelocene in which the central Ni atom is coordinated to one pentamethylcyclopentadienyl ring and one nickelafluorenyl ring. Both rings lie almost parallel to one another: the dihedral angle between the planes which include these rings is 4.4 (1)°. Slip parameter analysis indicates that the bonding mode of the central Ni atom to the nickelacyclic ring is between η3 and η5. Two‐dimensional layers of molecules are formed by C—H...π interactions.  相似文献   

18.
The compounds tricarbonyl(η5‐1‐iodocyclopentadienyl)manganese(I), [Mn(C5H4I)(CO)3], (I), and tricarbonyl(η5‐1‐iodocyclopentadienyl)rhenium(I), [Re(C5H4I)(CO)3], (III), are isostructural and isomorphous. The compounds [μ‐1,2(η5)‐acetylenedicyclopentadienyl]bis[tricarbonylmanganese(I)] or bis(cymantrenyl)acetylene, [Mn2(C12H8)(CO)6], (II), and [μ‐1,2(η5)‐acetylenedicyclopentadienyl]bis[tricarbonylrhenium(I)], [Re2(C12H8)(CO)6], (IV), are isostructural and isomorphous, and their molecules display inversion symmetry about the mid‐point of the ligand C[triple‐bond]C bond, with the (CO)3M(C5H4) (M = Mn and Re) moieties adopting a transoid conformation. The molecules in all four compounds form zigzag chains due to the formation of strong attractive I...O [in (I) and (III)] or π(CO)–π(CO) [in (I) and (IV)] interactions along the crystallographic b axis. The zigzag chains are bound to each other by weak intermolecular C—H...O hydrogen bonds for (I) and (III), while for (II) and (IV) the chains are bound to each other by a combination of weak C—H...O hydrogen bonds and π(Csp2)–π(Csp2) stacking interactions between pairs of molecules. The π(CO)–π(CO) contacts in (II) and (IV) between carbonyl groups of neighboring molecules, forming pairwise interactions in a sheared antiparallel dimer motif, are encountered in only 35% of all carbonyl interactions for transition metal–carbonyl compounds.  相似文献   

19.
The one‐dimensional chain catena‐poly­[[aqua(2,2′:6′,2′′‐terpyridyl‐κ3N)­nickel(II)]‐μ‐cyano‐κ2N:C‐[bis­(cyano‐κC)nickelate(II)]‐μ‐cyano‐κ2C:N], [Ni(terpy)(H2O)]‐trans‐[Ni‐μ‐(CN)2‐(CN)2]n or [Ni2­(CN)4­(C15H11N3)(H2O)], consists of infinite linear chains along the crystallographic [10] direction. The chains are composed of two distinct types of nickel ions, paramagnetic octahedral [Ni(terpy)(H2O)]2+ cations (with twofold crystallographic symmetry) and diamagnetic planar [Ni(CN)4]2? anions (with the Ni atom on an inversion center). The [Ni(CN)4]2? units act as bidentate ligands bridging through two trans cyano groups thus giving rise to a new example of a transtrans chain among planar tetra­cyano­nickelate complexes. The coordination geometry of the planar nickel unit is typical of slightly distorted octahedral nickel(II) complexes, but for the [Ni(CN)4]2? units, the geometry deviates from a planar configuration due to steric interactions with the ter­pyridine ligands.  相似文献   

20.
In the crystal structures of both title compounds, [1,3‐bis(2‐hydroxybenzylidene)‐2‐methyl‐2‐(2‐oxidobenzylideneaminomethyl)propane‐1,3‐diamine]nickel(II) [2‐(2‐hydroxybenzylideneaminomethyl)‐2‐methyl‐1,3‐bis(2‐oxidobenzylidene)propane‐1,3‐diamine]nickel(II) chloride methanol disolvate, [Ni(C26H25.5N3O3)]2Cl·2CH4O, and [1,3‐bis(2‐hydroxybenzylidene)‐2‐methyl‐2‐(2‐oxidobenzylideneaminomethyl)propane‐1,3‐diamine]zinc(II) perchlorate [2‐(2‐hydroxybenzylideneaminomethyl)‐2‐methyl‐1,3‐bis(2‐oxidobenzylidene)propane‐1,3‐diamine]zinc(II) methanol trisolvate, [Zn(C26H25N3O3)]ClO4·[Zn(C26H26N3O3)]·3CH4O, the 3d metal ion is in an approximately octahedral environment composed of three facially coordinated imine N atoms and three phenol O atoms. The two mononuclear units are linked by three phenol–phenolate O—H...O hydrogen bonds to form a dimeric structure. In the Ni compound, the asymmetric unit consists of one mononuclear unit, one‐half of a chloride anion and a methanol solvent molecule. In the O—H...O hydrogen bonds, two H atoms are located near the centre of O...O and one H atom is disordered over two positions. The NiII compound is thus formulated as [Ni(H1.5L)]2Cl·2CH3OH [H3L is 1,3‐bis(2‐hydroxybenzylidene)‐2‐(2‐hydroxybenzylideneaminomethyl)‐2‐methylpropane‐1,3‐diamine]. In the analogous ZnII compound, the asymmetric unit consists of two crystallographically independent mononuclear units, one perchlorate anion and three methanol solvent molecules. The mode of hydrogen bonding connecting the two mononuclear units is slightly different, and the formula can be written as [Zn(H2L)]ClO4·[Zn(HL)]·3CH3OH. In both compounds, each mononuclear unit is chiral with either a Δ or a Λ configuration because of the screw coordination arrangement of the achiral tripodal ligand around the 3d metal ion. In the dimeric structure, molecules with Δ–Δ and Λ–Λ pairs co‐exist in the crystal structure to form a racemic crystal. A notable difference is observed between the M—O(phenol) and M—O(phenolate) bond lengths, the former being longer than the latter. In addition, as the ionic radius of the metal ion decreases, the M—O and M—N bond distances decrease.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号