首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Fission of doubly charged silver clusters is investigated by the method of shell corrections. The following fission events are considered: Ag 22 2+ → Ag n + + Ag 22 ?n + , (n=11, 10, 9, 8); Ag 21 2+ → Ag n + + Ag 21 ?n + , (n=10, 9, 8, 7); Ag 18 2+ → Ag n + + Ag 18 ?n + , (n=9, 8, 7, 6). It is found that the shell correction energy is comparable to or larger than the deformation energy of the liquid drop. Threshold energies for the fission events are calculated and compared with the experimental abundance spectra obtained by Katakuse et al. (1990). Correspondence between the calculated threshold energies with the shell corrections and the experimental abundance is very good, showing products from lower threshold fission channels yield more abundance. The threshold energies without the shell corrections are almost constant irrespective of the fission channels and cannot explain the experimental abundance. Abundance of some products are too small to be accounted for only by the threshold energies. The low abundance of those products may be explained by the presence of competing fission channels that have similar minimal energy paths. It is found in fission of Ag 18 2+ that the shell correction overwhelms the Coulomb energy and the fission channel to Ag8 + Ag 10 2+ is preferred over the fission channel to Ag 8 + + Ag 10 + .  相似文献   

2.
《Chemical physics letters》1987,142(5):349-353
Complete active space MC SCF (CAS SCF) calculations followed by second-order configuration interaction (SOCI) calculations are carried out on the potential energy surfaces (bending surface, linear surfaces) of the 2Σg+ ground state of He3+. The potential minimum for the 2Σg+ state occurs at a linear geometry with HeHe bond length of 1.248 Å. The binding energy of He3+ with respect to He + He+ + He was calculated to be 2.47 eV at the SOCI level. The energy required to dissociate He3+ (2Σg+) into He2+ (2Σu+) and He(1S) is calculated to be 0.14 eV. The same level of SOCI calculations of He2+ yield a De value of 2.36 eV.  相似文献   

3.
The major relativistic effects are included into the model potential (MP) method of Bonifacic and Huzinaga. The effects are incorporated on the level of Cowan and Griffin's relativistic Hartree–Fock (RHF) method. The model potential parameters are determined using the results of nonrelativistic Hartree–Fock (NHF) and RHF calculations. A new scheme of selection of the basis functions for use in atomic and molecular MP calculations is proposed. To obtain agreement with the Hartree–Fock calculations on AgH and Ag2, the 4p shell has to be included explicitly in the MP calculations. The explicit treatment of the 4p electrons and the resulting reduction of the core size are necessary in order to overcome difficulties with approximate representation of the large 4p–4d core-valence interactions on the MP level.  相似文献   

4.
Open-shell single-determinantal calculations are reported here for the molecular species H2, Li2+, N2, O2 (triplet), O22?;, O2?, O22+, O2+, and F2; corresponding closed-shell calculations are reported for the species H2, N2, O2 (singlet), O22?, O22+, and F2. The floating spherical Gaussian orbital (FSGO ) method was employed. The calculated trend in bond lengths of isonucleic diatomic molecules is in agreement with experiment. For heteronucleic diatomic molecules, however, the experimental trend in bond lengths is not obtained; in this connection, the effect of lone pairs on bond length is discussed. The dissociation energies of H2 and Li2+ are evaluated. The energy gap between the triplet and singlet states of the oxygen molecule is calculated to be 8.96 eV compared to the experimental value of 4.54 eV.  相似文献   

5.
We calculate potential energies for charged and neutral jellium clusters which fragment in two pieces, in the framework of the liquid drop model plus Strutinsky shell corrections obtained from the two-centre harmonic oscillator. We consider the symmetric fragmentation of Na 4 + 2 + , Na 1 + 8 + , and Na38. Good agreement is found with results obtained by self-consistent methods, which are much more involved.  相似文献   

6.
A three-dimensional potential energy surface for the endoergic reaction Ne+H 2 + →NeH++H in the2 A′ ground state of the system NeH 2 + has been calculated by quantum chemical ab initio methods (CEPA approximation). The calculated points on this surface were fitted to an analytic ansatz in terms of an extended LEPS functional form augmented by a correction function. The latter was expanded in polynomials in inverse powers of the internuclear distances. This analytic form was used for quasiclassical trajectory calculations of reactive cross sections. In agreement with experimental investigations a strong vibrational enhancement is observed, i.e. the reaction is markedly favored if the necessary reaction energy is supplied as vibrational energy of H 2 + rather than as relative translational energy. Other properties of the reaction dynamics such as the backward to forward scattering ratio, the lifetime of the collision complex NeH 2 + , and final rotational and vibrational state distributions are also discussed on the basis of the quasiclassical trajectory calculations.  相似文献   

7.
Ab initio calculations of fragments of the potential energy surfaces of hydrogen exchange reactions between H2, CH4, and alanine molecules and the H3O+ ion were performed by the restricted Hartree-Fock method, at the second-order Møller-Plesset level of perturbation theory, and by the method of coupled clusters using the 6–31G* and aug-cc-pVDZ basis sets. The one-center synchronous mechanism of hydrogen exchange reaction was studied and the activation energies and structures of transition states were determined. It was found that the geometric parameters of the H2 and CH4 molecules in the transition states are close to those of the H3 + and CH5 + ions. The higher the proton affinity of the reacting molecule in the reaction studied the lower the activiation energy of hydrogen exchange. The one-center mechanism studied can be used to describe the high-temperature solid-state catalytic isotope exchange (HSCIE) reaction. The results ofab initio calculations of synchronous hydrogen exchange between the H3O+ ion and hydrogen atoms in different positions of the alanine molecule are in good agreement with experimental data on the regioselectivity and stereoselectivity of the HSCIE reaction with spillover-tritium.  相似文献   

8.
The formation of Ag3 2+ and Ag4 + clusters upon freezing out of aqueous-alcohol glassy solutions of AgClO4 by γ-irradiation at 77 K was established by ESR and optical spectroscopies. The Ag3 2+ cluster is formed by subsequent addition of Ag+ ions to a silver atom, and the Ag4 + cluster is most probably formed by the reduction of the Ag4 2+ cluster by alcohol radicals. The energies of optical transitions and energy gaps far the Ag4 m+ cluster (m = 0 to 3) were calculated. The absorption bands of the clusters shift to the UV region as the charge increases, which agrees with the experimental results.  相似文献   

9.
We present a spherical symmetry model, containing explicitly nonlocal effects in the electron-ion interaction, to describe the electronic properties of lithium clusters. We assume either an optimized discrete ionic structure or a jellium structure. The model provides the nonlocal potential from which the random phase approximation with exact exchange is applied to calculate the optical response of Li clusters. The optical response of Li 139 + obtained within this model is in good agreement with the measured giant dipole resonance. The same model is used to predict alkali-metal effective masses; the agreement with band structure calculations is emphasized.  相似文献   

10.
Ion mobilities of H2O+ drifting in helium are calculated and compared with experiment. These calculations employ global potential energy surfaces of the H2O+–He complex, which in the present case were calculated ab initio at the unrestricted MP2 level of theory using a basis set of aug‐cc‐pVTZ quality, and treating the ion as a rigid body. Details are presented of the general characteristics of both the ground and first‐excited electronic states of the complex. Although only the ground‐state surface was used for the mobility calculations, the ab initio determination of the ground state necessitated the inclusion of the first‐excited state owing to the presence of a crossing between the two. This crossing is also described. Mobilities calculated from the global surfaces are in good agreement with experiment. © 2004 Wiley Periodicals, Inc. Int J Quantum Chem, 2005  相似文献   

11.
Computer simulation has been employed to study the effect of a confined space of a planar model pore with structureless hydrophobic walls on the hydration of Na+Cl ion pairs in water vapor at room temperature. A detailed many-body model of intermolecular interactions has been used. The model has been calibrated relative to experimental data on the free energy and enthalpy of the initial reactions of water molecule attachment to ions and the results of quantum-chemical calculations of the geometry and energy of Na+Cl (H2O)N clusters in stable configurations, as well as spectroscopic data on Na+Cl dimer vibration frequencies. The free energy and work of hydration, as well as the adsorption curve, have been calculated from the first principles by the bicanonical statistical ensemble method. The dependence of hydration shell size on interionic distance has been calculated by the method of compensation potential. The transition between the states of a contact (CIP) and a solvent-separated ion pair (SSIP) has been reproduced under the conditions of a nanopore. The influence of the pore increases with the hydration shell size and leads to the stabilization of the SSIP states, which are only conditionally stable in bulk water vapor.  相似文献   

12.
The accuracy of the diatomics-in-molecules (DIM) model for the krypton ionic trimer is examined in a series of ab initio calculations. In the C2v symmetry, the ground states of irreducible representations B2 and A1 were calculated using partially spin restricted open-shell coupled cluster method with perturbative triple connections (RHF-RCCSD-T), the relativistic effective core potential (RECP) and an extended basis set of atomic orbitals. Internally contracted multireference configuration interaction method (icMRCI) with the extended and restricted basis set was used to generate the potential energy surfaces (PESs) of the nine electronic states of Kr 3 + corresponding to Kr(1S) + Kr(1S) + Kr+(2P) dissociation limit in a wide interval of nuclear geometries. The overall agreement of the accurate ab initio PESs and the diatomics-in-molecules PESs confirms the quality of the DIM Hamiltonian for the Kr 3 + clusters and justifies its use in dynamical and spectroscopic studies of the Kr n + clusters. Inclusion of the spin–orbit coupling into the ab initio PESs through a semi-empirical scheme is proposed.  相似文献   

13.
Full CI calculations of first- and second-order properties are presented to provide benchmark results for comparisons with other methods, such as multireference CI(MRCI). The full CI(FCI) polarizability of F is computed using a double zeta plus polarization plus diffuse basis set. These FCI results are compared to those obtained at other levels of theory; the CASSCF/MRCI with Davidson correction results are in excellent agreement with the FCI. Differences between the polarizability results computed as a (numerical) second derivative of the energy or as an induced dipole moment are also discussed. FCI calculations are presented for the dipole moment and polarizability of HF, CH2 and SiH2 using a DZP basis set. Again, the CASSCF/MRCI values are in excellent agreement with the FCI results, whereas SDCI values, whether computed as an expectation value or as an energy derivative, are much worse. The results obtained using the CPF approach are in considerably better agreement with the FCI results than SDCI, and are similar in quality to the SDCI energy derivative results with the inclusion of Davidson's correction.  相似文献   

14.
We propose a modified Nilsson model for spheroidal sodium clusters and investigate the modification of shell structure by deformation for sizes up toN=850. For spherical clusters, our potential is fitted to the single-particle spectra obtained from microscopically selfconsistent Kohn-Sham calculations using the jellium model and the local density approximation. Employing Strutinsky's shell-correction method, the surface energy of the jellium model is renormalized to its experimental value. We find good agreement between our theoretically predicted deformed magic numbers and the experimentally observed ones extracted from recent sodium mass abundance spectra.  相似文献   

15.
The Becke exchange functional is used for calculation of properties of the jellium model using the slab geometry inside a box with the infinite potential barriers at the boundaries. We simplify semianalytical representation of matrix elements. We calculate the surface energies and work functions with self-consistent electron densities. For all densities (here, we give results in erg/cm2 for rs = 2.07 bohr, in comparison with the LSD approximation (?602)) and the uncorrected Pw GGA -II (?730), the Becke-II exchange only (?1212), and the Becke-II exchange with Perdew86 correlation (?830) [always close to Pw GGA -I (?814)] give smaller surface energies. The most important factor determining values of surface energies from different GGAS seems to be a form of a correlation potential. We also calculate the effect of finite slab thickness and the vacuum region thickness on the surface energy at the LSD level and indicate its importance in various jellium model calculations. © 1995 John Wiley & Sons, Inc.  相似文献   

16.
Vacuum ultraviolet (VUV) dissociative photoionization of isoprene in the energy region 8.5–18 eV was investigated with photoionization mass spectroscopy (PIMS) using synchrotron radiation (SR). The ionization energy (IE) of isoprene as well as the appearance energies (AEs) of its fragment ions C5H7+, C5H5+, C4H5+, C3H6+, C3H5+, C3H4+, C3H3+ and C2H3+ were determined with photoionization efficiency (PIE) curves. The dissociation energies of some possible dissociation channels to produce those fragment ions were also determined experimentally. The total energies of C5H8 and its main fragments were calculated using the Gaussian 03 program and the Gaussian‐2 method. The IE of C5H8, the AEs for its fragment ions, and the dissociation energies to produce them were predicted using the high‐accuracy energy model. According to our results, the experimental dissociation energies were in reasonable agreement with the calculated values of the proposed photodissociation channels of C5H8. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

17.
We present a new parametrization (based on ab initio calculations) of the bending potentials for the two lowest potential energy surfaces of the reaction O(3P) + H2, and we use it for rate constant calculations by variational transition-state theory with multidimensional semiclassical tunneling corrections. We present results for the temperature range 250–2400 K for both the rate constants and the intermolecular kinetic isotope effects for the reactions of O(3P) with D2 and HD. In general, the calculated rate constants for the thermal reactions are in excellent agreement with available experiments. We also calculate the enhancement effect for exciting H2 to the first excited vibrational state. The calculations also provide information on which aspects of the potential energy surfaces are important for determining the predicted rate constants.  相似文献   

18.
A method is proposed to determine the valence type vacant orbitals, which are suitable for CI calculations and for the initial guess orbitals in MC SCF calculations. The method was applied to calculate the ionization energies of series of molecules and to draw the potential energy curves of various states of N2 and N+2.  相似文献   

19.
《Chemical physics》1986,101(2):227-241
State-to-state cross sections have been calculated for collisions of N+2 (X, υ) or N+2 (A, υ) with Ar at relative energies of 8 and 20 eV. The computations utilize potential energy surfaces computed recently by Archirel and Levy. In the calculations the translational motion is treated classically, and the time-dependent Schrödinger equation is solved exactly for the vibronic states of the system. In addition to the charge transfer and vibrational excitation and deexcitation processes, cross sections are also obtained for internal conversion between N+2 (A) + Ar and N+2 (X) + Ar. The results are in good agreement with the available experimental data at these energies.  相似文献   

20.
Ab initio SCF and CEPA PNO calculations have been performed together with MINDO/3 calculations on the system C2H+7. In agreement with experimental assignment, but in contradiction to MINDO/3 results, the ab initio methods show the CC protonated structure to be more stable than the CH protonated structure. The energy difference is 8.5 kcal/mol at the SCF level and 6.3 kcal/mol with inclusion of electron correlation. Additionally, ΔH0300 for the reaction C2H+s + H2 = C2H+7 and the proton affinity of ethane are computed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号