首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The relative rate technique has been used to measure the hydroxyl radical (OH) reaction rate constant of ethyl 3-ethoxypropionate (EEP, CH3CH2(SINGLE BOND)O(SINGLE BOND)CH2CH2C(O)O(SINGLE BOND)CH2CH3). EEP reacts with OH with a bimolecular rate constant of (22.9±7.4)×10−12 cm3 molecule−1s−1 at 297±3 K and 1 atmosphere total pressure. In order to more clearly define EEP's atmospheric reaction mechanism, an investigation into the OH+EEP reaction products was also conducted. The OH+EEP reaction products and yields observed were: ethyl glyoxate (EG, 25±1% HC((DOUBLE BOND)O)C((DOUBLE BOND)O)(SINGLE BOND)O(SINGLE BOND)CH2CH3), ethyl (2-formyl) acetate (EFA, 4.86±0.2%, HC((DOUBLE BOND)O)(SINGLE BOND)CH2(SINGLE BOND)C((DOUBLE BOND)O)(SINGLE BOND)O(SINGLE BOND)CH2CH3), ethyl (3-formyloxy) propionate (EFP, 30±1%, HC((DOUBLE BOND)O)(SINGLE BOND)O(SINGLE BOND)CH2CH2(SINGLE BOND)C((DOUBLE BOND)O)(SINGLE BOND)O(SINGLE BOND)CH2CH3), ethyl formate (EF, 37±1%, HC((DOUBLE BOND)O)O(SINGLE BOND)CH2CH3), and acetaldehyde (4.9±0.2%, HC((DOUBLE BOND)O)CH3). Neither the EEP's OH rate constant nor the OH/EEP reaction products have been previously reported. The products' formation pathways are discussed in light of current understanding of oxygenated hydrocarbon atmospheric chemistry. © 1997 John Wiley & Sons, Inc.  相似文献   

2.
Three-membered ring (3MR) forming processes of X(SINGLE BOND)CH2(SINGLE BOND)CH2(SINGLE BOND)F and CH2(SINGLE BOND)C((SINGLE BOND)Y)(SINGLE BOND)CH2(SINGLE BOND)F (X(DOUBLE BOND)CH2, O, or S and Y(DOUBLE BOND)0 or S) through a gas phase neighboring group mechanism (SNi) are studied theoretically using the ab initio molecular orbital method with the 6–31+G* basis set. When electron correlation effects are considered, the activation (ΔG) and reaction energies (ΔG0) are lowered by ca. 10 kcal mol−1, indicating the importance of the electron correlation effect in these reactions. The contribution of entropy of activation (−TΔS) at 298 K to ΔG is very small, and the reactions are enthalpy controlled. The ΔG and ΔG0 values for these ring closure processes largely depend on the stabilities of the reactants and the heteroatom acting as a nucleophilic center. The Bell–Evans–Polanyi principle applies well to all these reaction series. © 1997 John Wiley & Sons, Inc. J Comput Chem 18 : 1773–1784, 1997  相似文献   

3.
The polycarbosilanes (PCS) with meta-linkage bending unit ((SINGLE BOND)Me2Si(SINGLE BOND)m(SINGLE BOND)C6H4(SINGLE BOND)Me2Si(SINGLE BOND)CH2CH2(SINGLE BOND)) were successfully synthesized in mild conditions by hydrosilylation in the presence of [Pt{(CH2(DOUBLE BOND)CHSiMe2)2O}2]. The PCS obtained were soluble in various solvents owing to the lowering of the crystallinity. These properties are well compared with those of the PCS [(SINGLE BOND)Me2Si(SINGLE BOND)p(SINGLE BOND)C6H4(SINGLE BOND)Me2Si(SINGLE BOND)CH2CH2(SINGLE BOND)]n. © 1996 John Wiley & Sons, Inc.  相似文献   

4.
G2 ab initio calculations on all ABX three-membered rings (TMRs) that can be derived from cyclopropane by systematic substitution of the (SINGLE BOND)CH2 groups by (SINGLE BOND)NH or (SINGLE BOND)O groups have been performed. Our results show that the decrease in the A(SINGLE BOND)B bond length as the electronegativity of X increases is significantly larger than that found for the corresponding acyclic analogs. In general, a systematic substitution of the (SINGLE BOND)CH2 groups of cyclopropane by (SINGLE BOND)NH or (SINGLE BOND)O groups implies significant geometric changes that are not reflected in a parallel change of the corresponding conventional ring strain energy (CRSE). When the electronegativity of the groups forming the TMR increases the effect on the CRSE of the system is small, although the charge delocalization inside the ring decreases. The near constancy of the CRSE along the series can be explained in terms of the charge redistribution of the system where the (SINGLE BOND)CH2 groups play a crucial role. There are, however, significant changes in the hydrogenation energies of the TMR investigated; our results show that, when in an ABX three-membered ring, the electronegativity of X increases the hydrogenation energy of A(SINGLE BOND)B bond decreases and vice versa. © 1998 John Wiley & Sons, Inc. J Comput Chem 19: 1072–1086, 1998  相似文献   

5.
Density functional calculations are reported for the molecular structures, harmonic vibrational frequencies, UV/visible spectra, and oxo-transferability of MoO2X2 (X = F, Cl, Br, I). Available experimental data have been used to check the validity of the theoretical calculations. Given the good agreement between theory and gas-phase experiment, predictions have been issued for the less studied members of this family of compounds. Furthermore, electronic spectra of the full series have been computed for the first time. For all transitions studied, excitation energies decrease in the order F > Cl > Br > I. Finally, the labilization of Mo(SINGLE BOND)O bonds generated by the HOMO(SINGLE BOND)LUMO transition, which is related to the oxygen-atom transfer reaction in the active site of molybdenum oxidoreductases, was also investigated. For MoO2Cl2 and MoO2Br2 compounds, the HOMO-LUMO transition yields a considerable lengthening of the Mo(SINGLE BOND)O bond, yet not requiring a large excitation energy. © 1997 John Wiley & Sons, Inc.  相似文献   

6.
The evolution of the ν C (SINGLE BOND) Cl bands of the infrared spectrum of a Bernoullian though slightly isotactic poly(vinyl chloride) (PVC), with both the degree of SN2 substitution reaction with sodium benzenethiolate, as studied earlier, and the increase of the nucleophile infrared bands, has been studied by FTIR spectroscopy. In a parallel way, the changes in the same bands, in particular those at 615 and 637 cm−1, presumably induced by SN2 substitution, have been estimated, theoretically, by comparing the sequential order and the number of the distinct conformationally sensitive vibration modes of C(SINGLE BOND)Cl bond, prior and after substitution, for a series of polymer sequences containing the reactive sites, namely the isotactic mmr tetrad and the heterotactic rmrr pentad, according to earlier work. The experimental behaviour of the νC(SINGLE BOND)Cl bands is found to be in close agreement with the theoretical expectations, thereby allowing two main conclusions to be drawn: (i) during the early stage going up to conversions of 10–12%, the reaction proceeds in a nearly exclusive manner, by the mmr and rmrr terminal of long isotactic and syndiotactic sequences, respectively; and (ii) any reaction event throughout the substitution process proves to be highly dependent upon the local environment in which each of the foregoing reactive structures finds itself. In summary, the local configurational nature of the mechanisms of analogous reactions of polymers is strongly suggested on the grounds of the results given herein. © 1996 John Wiley & Sons, Inc.  相似文献   

7.
Novel oligomers possessing a backbone formed of ((TRIPLE BOND)Si(SINGLE BOND)CH2(SINGLE BOND)Si(TRIPLE BOND)) and (SINGLE BOND)Si(SINGLE BOND)n units were prepared by the copolycondensation of bis(chlorosilyl)methanes and various dichlorosilanes in the presence of sodium, in refluxing toluene. The effect of the respective molar ratios of comonomers on the yields and the structure of the copolymers was investigated. The role of substituents on silicon atoms in the ability of these materials to provide convenient ceramic precursors upon pyrolysis was examined. When (TRIPLE BOND)Si(SINGLE BOND)H bonds were present, thermal cross-linking was readily performed and ceramics possessing variable C/Si ratios were prepared.  相似文献   

8.
The equilibrium geometries and transition states for interconversion of the CSiH2 isomers in the singlet electronic ground state are optimized at the MP2 and CCSD(T) levels of theory using a TZ2P basis set. The heats of formation, vibrational frequencies, infrared intensities, and rotational constants are also predicted. There are three energy minima on the CSiH2 potential energy surface. Energy calculations at CCSD(T)/TZ2P(fd) + ZPE predict that the global energy minimum is silavinylidene (1), which is 34.1 kcal mol−1 lower in energy than trans-bent silaacetylene (2) and 84.1 kcal mol−1 more stable than the vinylidene isomer (3). The barrier for rearrangement 2→1 is calculated at the same level of theory to be 5.1 kcal mol−1, while for the rearrangement 3→2 a barrier of 2.7 kcal mol−1 is predicted. The natural bond orbital (NBO) population scheme indicates a clear polarization of the C(SINGLE BOND)Si bonds toward the carbon end. A significant ionic contribution to the C(SINGLE BOND)Si bonds of 1 and 2 is suggested by the NBO analysis. The C(SINGLE BOND)Si bond length of trans-bent silaacetylene (2) is longer than previously calculated [1.665 Å at CCSD(T)/TZ2P)]. The calculated carbon-silicon bond length of 2 is in the middle between the C(SINGLE BOND)Si double bond length of 1 (1.721 Å) and the C(SINGLE BOND)Si triple bond of the linear form HCSiH (4), which is 1.604 Å. Structure 4 is a higher-order saddle point on the potential energy surface. © 1996 by John Wiley & Sons, Inc.  相似文献   

9.
Extensive semiempirical SCF-MO calculations confirm that the exo-anomeric effect in methyl O-, N- and S-glycosides deals with an interaction of π-character along the C1(SINGLE BOND)Y1 bond in a X5(SINGLE BOND)C1(SINGLE BOND)Y1(SINGLE BOND)Me moiety (where X = O, S; Y = O, NH, S). The bond-order between orbitals of pπ symmetry on C1 and Y1 serves as a measure of all significant molecular orbital interactions responsible for the exo-anomeric stabilization. The set of simpler compounds X(SINGLE BOND)CH2(SINGLE BOND)Y (X = OH, SH, SeH, TeH; Y = OH, SH, SeH, TeH, NH2) on which the anomeric effect has been well studied was also calculated and it is noticeable that the π-bond-orders accord with the results of other analyses of the ab initio wave function accounting for the anomeric effect. Although the AM1 and the PM3 parameterizations of MNDO do not accurately reproduce the anomeric effect energetic, they do reproduce accordingly the expected variations in the molecular conformations of complex carbohydrates, and thus it follows that there are maximal π-bond-orders for the synclinal arrangement around the C1(SINGLE BOND)Y1 bond. In addition, the π-bond-orders show the same behavior for conformational preferences around the C1(SINGLE BOND)C′1 and the C5(SINGLE BOND)C6 bonds in methyl C-glycosides and in the hydroxymethyl group of α-D -glucose, respectively. © 1996 by John Wiley & Sons, Inc.  相似文献   

10.
The previously reported 2Ag, 2A1g, and 2Bg states of ionized ethane are characterized at several levels of theory. The diborane-like 2Ag state, which gives rise to the observed ESR spectrum, is predicted by SCF and CCD calculations not to exist in a separate minimum from the 2A1g state formed by ionization of the C(SINGLE BOND)C bond. However, as reported by Lunell and Huang, second-order Moller-Plesset theory places the 2Ag lowest, provided polarization functions are included on carbon. QCISD theory predicts that both A states correspond to potential energy minima, but places the long-bond 2A1g state lower, at least with moderately large basis sets. F orbitals on carbon stabilize the diborane structure more than the long-bond one. When a potential energy surface is generated for a series of fixed C(SINGLE BOND)C bond lengths by optimizing all variables except for the C(SINGLE BOND)C bond length with MP2 theory and calculating the energy with QCISD(T), the 2Ag state is predicted to be the lowest energy state with the 2A1g state 1.83 kJ/mol above it. The two A states are predicted to be separated by a barrier 2.79 kJ/mol above the lower state. This barrier is above the zero-point energy in the C(SINGLE BOND)C stretch for the lower state but below the ZPE for this stretch in the upper state, which is therefore predicted not to exist as a stable species. A single quantum of vibrational excitation in the low frequency C(SINGLE BOND)C stretch is predicted to yield an ion with a poorly defined C(SINGLE BOND)C bond length. The highest levels of theory employed give poor agreement with the experimental hyperfine coupling constants. The discrepancy could either be due to neglect of vibrational effects, to poor inherent accuracy of the calculation, as one author has concluded, or to compression of the ion by the matrix as suggested by another. The 2Bg state is found to be higher in energy than the A states at all theoretical levels and is predicted to have a large (160.2–177.4 G) hyperfine coupling from four hydrogens. The transition state for simultaneous exchange of two hydrogen atoms between the carbons by a diborane structure is predicted to lie above the lowest energy fragmentation threshold, in agreement with experiment. © 1996 by John Wiley & Sons, Inc.  相似文献   

11.
Relativistic density functional calculations have been carried out for the group VI transition metal carbonyls M(CO)5L (M=Cr, Mo, W; L=OH2, NH3, PH3, PMe3, N2, CO, OC (isocarbonyl), CS, CH2, CF2, CCl2, NO+). The optimized molecular structures and M(SINGLE BOND)L bond dissociation energies, as well as the metal–carbonyl bond energy of the trans CO group, have been calculated. Besides the marked dependence of the trans M(SINGLE BOND)CO bond length on the type of ligand L, such an effect on the that bond energy is also observed. For the chromium compounds, the trans Cr(SINGLE BOND)CO bond length varies from 184 to 199 pm and its bond energy from 242 to 150 kJ/mol. For the molybdenum compounds, the range is 197 to 216 pm and 253 to 128 kJ/mol and, for tungsten, 198 to 214 pm and 293 to 159 kJ/mol. The observed trends can be explained with the π acceptor strength of the L ligand. © 1997 John Wiley & Sons, Inc. J Comput Chem 18 : 1985–1992, 1997  相似文献   

12.
1,3,2-Benzimidazaborole, 1,3,2-benzoxaborole, and 1,3,2-benzothiazaborole were synthesized from the corresponding 2-benzazole N(SINGLE BOND)BH3 and 2-benzazole S(SINGLE BOND)BH3 adducts through a reductive transposition from the isolobal fragment X(SINGLE BOND)C(sp2) (DOUBLE BOND) N(sp2) (SINGLE BOND) B(sp3) (X (DOUBLE BOND) N, O, S) to the fragment X(SINGLE BOND)B(sp2) (DOUBLE BOND) N(sp2) (SINGLE BOND) C(sp3). N(SINGLE BOND)BH3 substitution shifts to lower frequencies 4-H, C-3a, and C-7a resonances. The X-ray diffraction analysis of 2-(o-methoxyphenyl)benzothiazole N(SINGLE BOND)BH3 adduct is reported. Two new tetracyclic boron-bridged compounds were observed as by-products (6,9-(ethyl)-diaza-2-oxa-1-bora[3,4,7,8]-dibenzobycyclo[4.3.0]-nona-3,7-diene, 6d, and 8-aza-9-oxa-2-thia-1-bora-[3,4,7,8]dibenzobycyclo[3.4.0]nona-3,7-diene, 15d, when 2-(o-methoxyphenyl)-1-ethylbenzimidazole-BH3 6b and 2-(o-methoxyphenyl)-benzothiazole-BH3 15b adducts were heated. © 1996 John Wiley & Sons, Inc.  相似文献   

13.
The interaction of an iron atom with molecular nitrogen was studied using density functional theory. Calculations were of the all-electron type and both conventional local and gradient-dependent models were used. A ground state of linear structure was found for Fe(SINGLE BOND)N2, with 2S + 1 = 3, whereas the triangular Fe(SINGLE BOND)N2 geometry, of C2v symmetry, was located 2.1 kcal/mol higher in energy, at least for the gradient-dependent model. The reversed order was found using the conventional local approximation. In Fe(SINGLE BOND)N2, the N(SINGLE BOND)N bond is strongly perturbed by the iron atom: It has a bond order of 2.4, a vibrational frequency of 1886 cm−1, and an equilibrium bond length of 1.16 Å: These values are 3.0, 2359 cm−1, and 1.095 Å, respectively, for the free N2 molecule. With the gradient-dependent model and corrections for nonsphericity of the Fe atom, a very small binding energy, 8.8 kcal/mol, was calculated for Fe(SINGLE BOND)N2. Quartet ground states were found for both Fe(SINGLE BOND)N+2 and Fe(SINGLE BOND)N2. The adiabatic ionization potential, electron affinity, and electronegativity were also computed; the predicted values are 7.2, 1.22, and 4.2 eV, respectively. © 1997 John Wiley & Sons, Inc.  相似文献   

14.
Ab initio calculations at the Hartree-Fock (HF) and the second-order Møller-Plesset (MP2) levels are performed for finite polyenes C2nH2n+2 to estimate the structure and dimerization energy (Edim) of polyacetylene. The effect of electron correlation on the structure of finite polyenes is analyzed in detail. The MP3/6–31G* C(DOUBLE BOND)C and C(SINGLE BOND)C bond lengths in polyacetylene are estimated by a simple extrapolation method using empirical corrections for the MP2 deficiencies, yielding values [C(DOUBLE BOND)C(MP3) ∼ 1.36 Å and C(SINGLE BOND)C(MP3) ∼ 1.44 Å] that are in a good agreement with experiment (C(DOUBLE BOND)C (DOUBLE BOND) 1.36 Å and C(SINGLE BOND)C (DOUBLE BOND) 1.44–1.45 Å). Comparison is also made with other theoretical estimates of polyacetylene structure. Edim is approximated by the energy difference between the equilibrium and hypothetical polyenic structures. It is estimated that Edim is ∼ 1.4–1.5 kcal/mol (0.06–0.07 eV) per carbon-carbon bond at the HF level with 4–21G and 6–31G* basis sets and ∼ 0.3–0.5 kcal/mol (0.013–0.022 eV) at the MP2 level with the 6–31G* basis set. It is concluded that Edim is very sensitive to the level of approximation employed so that a proper treatment of electron correlation is essential to obtain a reliable estimate of the dimerization energy. © 1997 John Wiley & Sons, Inc.  相似文献   

15.
The ylidyl substituent of the chlorophosphane Ph3P(DOUBLE BOND)CAr(SINGLE BOND)PRCl exerts a strong influence on the P(SINGLE BOND)Cl bond. An X-ray structure investigation of the representative with Ar(DOUBLE BOND)Ph, R(DOUBLE BOND)Me reveals the longest P(SINGLE BOND)Cl bond ever observed for an acyclic chlorophosphine (226.2(1) pm). It is connected to a conformation that allows an effective negative hyperconjugation. The ylidyl chlorophosphanes with an amino group R are covalent in benzene but become more or less ionic in dichloromethane solution. The solvent-dependent dissociation equilibrium can be followed by 31P NMR spectra. In case of an enamine-derived ylidyl chlorophosphane, the equilibrium shifts almost completely from the covalent to the ionic side within a rather narrow range of solvent composition (20 to 70 vol % dichloromethane). © 1996 John Wiley & Sons, Inc.  相似文献   

16.
The adsorptive properties of cyanide (CN) on coinage metal (M) electrodes (M=Cu, Ag, Au) have been investigated using a relativistic density functional method. The way to model the electrochemical potential applied to the electrodes is to consider the systems in the presence of a perturbative external field F. The field-perturbative approach is proven to be a suitable method in interpreting the observed spectral shifts with electrode potential. The calculated potential-dependent shifts of ωM(SINGLE BOND)CN and ωC(SINGLE BOND)M are similar for the three metals, in agreement with experiment observations. The relativistic effects are required to account for the similarity in the frequency shifts of ωM(SINGLE BOND)CN. The calculated vibrational tuning rates dωC(SINGLE BOND)N/dF are 6.61×10−7, 6.61×10−7, and 5.64×10−7 cm−1/(V/cm) for M=Cu, Ag, and Au, respectively. The coupling of the M(SINGLE BOND)CN and C(SINGLE BOND)N internal modes contributes significantly (about 25%) to the size of the frequency shifts ΔωC(SINGLE BOND)N of the ligand. The effect of electric fields on the metal(SINGLE BOND)CN bonding is also investigated. It is shown that changes in the magnitude of CN to the metal donation and M(SINGLE BOND)CN bond strength occur under the influence of the electric field. © 1998 John Wiley & Sons, Inc. Int J Quant Chem 67: 175–185, 1998  相似文献   

17.
All the possible rotamers of 2-aminoethanol and 2-amino-ethanethiol were fully optimized at the ab initio level using the 6–31G** basis with correlation energy inclusion and zero-point energy evaluation. Thirteen local minima for the former and 14 for the latter compound were found. In both molecules, the gauche′-gauche-gauche′ (g′Gg′) is the prevailing conformation, but in the sulfurated compound, it is accompanied by relevant percentages of other conformers, owing to the very low ΔE values. The stability of the g′Gg′ accommodation derives mainly from the presence of weak hydrogen bridges (O(SINGLE BOND)H···N and S(SINGLE BOND)H···N, respectively). The rotation barriers around the C(SINGLE BOND)C and C(SINGLE BOND)N bonds are higher than those around the C(SINGLE BOND)O and C(SINGLE BOND)S ones. © 1996 John Wiley & Sons, Inc.  相似文献   

18.
Ozonolysis of cis- and trans-2-butene isomers were carried out in a 570 l spherical glass vessel in 730 torr synthetic air at 295 ± 3 K. The initial concentrations were 5 to 10 ppmv for the isomers and 2 to 5 ppmv for ozone. Quantitative yields were determined by FTIR spectroscopy for CH3CHO, HCHO, CH4, CH3OH, CO, and CO2. By means of computational subtraction of the spectral contribution of the identified products from the product spectra, residual spectra have been obtained. Formation of 2-butene ozonide, propene ozonide, and l-hydroperoxyethyl formate CH3CH(OOH)(SINGLE BOND)O(SINGLE BOND)CH(O) have been identified in the residual spectra. These products have been shown to be formed in the reactions of the Criegee intermediate CH3CHOO with CH3CHO, HCHO, and HCOOH, respectively. Mechanistic implications and atmospheric relevance of these observations are discussed. © 1997 John Wiley & Sons, Inc. Int J Chem Kinet 29: 461–468, 1997.  相似文献   

19.
采用MP2(Full)/6-311G(d,p)和B3LYP/6-311G(d,p)找到了反应Cl+CH2SH→HCl+CH2S的两个可能的反应通道, 得到了各反应通道的反应物、中间体、过渡态和产物的优化构型、谐振频率. 对反应进程中若干关键点进行了电子密度拓扑分析, 讨论了反应进程中键的断裂、生成和化学键的变化规律, 找到了该反应的结构过渡区(结构过渡态)和能量过渡态, 发现了反应热与结构过渡区之间的关系.  相似文献   

20.
Kinetic isotope effects of deuterium and oxygen-18 were measured on fragmentation of syn-3-ethoxy ( 1a ) and syn-3-(N,N-diethylamino) ( 1b ) 2,3-oxaphosphabicyclo[2.2.2]octene derivatives in 1,2-dichloroethane at 100°C. The secondary deuterium isotope effect on hydrogen adjacent to the P(SINGLE BOND)C bond was found to be 1.060 ± 0.008 for 1a and 1.081 ± 0.009 for 1b . The kinetic oxygen isotope effect on the bridge P(SINGLE BOND)O(SINGLE BOND)C is 0.9901 ± 0.0016 for 1a . The data indicate an unsymmetrical transition state for retrocycloaddition extrusion of the metaphosphate moiety, with the breakage of the C(SINGLE BOND)P bond and formation of the P (DOUBLE BOND) O bond more advanced than the C(SINGLE BOND)O breakage. A synthesis of 1a and 1b labeled with deuterium is described. © 1996 John Wiley & Sons, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号