首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The gas-phase reaction of ozone with a series of unsaturated oxygenates and with 1-pentene has been studied at ambient T (287–296 K) and p=1 atm. of air. Reaction rate constants, in units of 10−18 cm3 molecule−1 s−1, are 0.22±0.05 for 2 (5H)-furanone, 1.08±0.20 for methacrolein, 1.74±0.20 for crotonaldehyde, 5.84±0.39 for methylvinyl ketone, 1.05±0.15 for methyl acrylate, 3.20±0.47 for vinyl acetate, 59.0±8.7 for cis-3-hexenyl acetate, 154±30 for ethylvinyl ether, ≥(315±23) for linalool, and 10.9±1.4 for 1-pentene. The results are compared to literature data for the compounds studied and for other unsaturated oxygenates, and are discussed in terms of reactivity toward ozone as a function of the nature, number, and position of the oxygen-containing substituents (SINGLEBOND)CHO, (SINGLEBOND)C(O)R, (SINGLEBOND)C(O)OR, and (SINGLEBOND)OC(O)R. Atmospheric implications are briefly examined. © 1998 John Wiley & Sons, Inc. Int. J Chem Kinet: 30: 21–29, 1998.  相似文献   

2.
The relative OH reaction rates from the simulated atmospheric oxidation of 4-methyl-2-pentanone, trans-4-octene, and trans-2-heptene have been measured. Reactions were carried out at 297 ± 2 K in 100-liter FEP Teflon®-film bags. The OH radicals were produced from the photolysis of methyl nitrite. The measured rate constants (×1011 cm3 molecule?1 s?1) were as follows: 6.77 ± 0.50 for trans-4-octene, 1.40 ± 0.07 for 4-methyl-2-pentanone, and 6.70 ± 0.23 for trans-2-heptene using an absolute rate constant of 2.63 × 1011 cm3 molecule?1 s?1 for the reaction of OH with propene; the principal reference organic. © John Wiley & Sons, Inc.  相似文献   

3.
Gas-phase reaction mechanisms of ozone with cis/trans-3-hexenyl acetate and cis/trans-2-hexenyl acetate are performed using density functional theory. The reactions are initiated by the formation of the primary ozonides which are followed by the reactions of biradicals with H2O or NO. The formation of the secondary ozonide (SOZ) is also studied. On the basis of the above DFT calculations, the modified multichannel RRKM theory is used to evaluate the rate constants. At 298 K and 101 kPa, the calculated total rate constants are 9.84 × 10?17, 1.39 × 10?17, 2.50 × 10?17, and 7.37 × 10?17 cm3 mol?1 s?1 for cis-3-hexenyl acetate, trans-2-hexenyl acetate, cis-2-hexenyl acetate, and trans-3-hexenyl acetate, respectively. Our results are in good agreement with experimental values. The total rate coefficients are almost pressure-independent in the range of 0.01–10,000 Torr, but show temperature dependence over the whole study range (200–2,000 K). In addition, branching ratios of the favorable reaction channels are obtained.  相似文献   

4.
A combined density functional theory and transition-state theory study of the mechanisms and reaction coefficients of gas-phase ozonolysis of geraniol-trans, 6-methyl-5-hepten-2-one, and 6-hydroxy-4-methyl-4-hexenal is presented. The geometries, energies, and harmonic vibrational frequencies of each stationary point were determined by B3LYP/6-31(d,p), MPW1K/cc-pVDZ, and BH&HLYP/cc-pVDZ methods. According to the calculations, the ozone 6-methyl-5-hepten-2-one reaction is faster than the ozone 6-hydroxy-4-methyl-4-hexenal reaction, but both are slower than the ozone geraniol-trans reaction. By using the BH&HLYP/cc-pVDZ data, a global rate coefficient of 5.9 x 10(-16) cm(3) molecule(-1) s(-1) was calculated, corresponding to the sum of geraniol-trans, 6-methyl-5-hepten-2-one, and 6-hydroxy-4-methyl-4-hexenal reactions with the ozone. These results are in good agreement with the experimental studies.  相似文献   

5.
The kinetics of the reactions of ground state oxygen atoms with 1-pentene, 1-hexene, cis-2-pentene, and trans-2-pentene was investigated in the temperature range 200 to 370 K. In this range the temperature dependences of the rate constants can be represented by k = A′ Tn exp(− E′a/RT) with A′ = (1.0 ± 0.6) · 10−14 cm3 s−1, n = 1.13 ± 0.02, E′a = 0.54 ± 0.05 kJ mol−1 for 1-pentene: A′ = (1.3 ± 1.2) · 10−14 cm3 s−1, n = 1.04 ± 0.08, E′a = 0.2 ± 0.4 kJ mol−1 for 1-hexene; A′ = (0.6 ± 0.6) · 10−14 cm3 s−1, n = 1.12 ± 0.05, E′a = − 3.8 ± 0.8 kJ mol−1 for cis-2-pentene; and A′ = (0.6 ± 0.8) · 10−14 cm3 s−1, n = 1.14 ± 0.06, E′a = − 4.3 ± 0.5 kJ mol−1 for trans-2-pentene. The atoms were generated by the H2-laser photolysis of NO and detected by time resolved chemiluminescence in the presence of NO. The concentrations of the O(3P) atoms were kept so low that secondary reactions with products are unimportant. © 1997 John Wiley & Sons, Inc.  相似文献   

6.
Using the relative kinetic method rate coefficients have been determined for the gas-phase reaction of bromine (Br) radicals with a series of alkenes, chloroalkenes, dienes, and aromatic hydrocarbons in 1000 mbar of synthetic air at 298 ± 2 K. Both the UV photolysis of CH2Br2 (λ = 254 nm) and the visible photolysis of Br2 (320 ≤ λ ≤ 480) were used to generate Br radicals. For the alkenes and dienes the following rate coefficients were obtained (in units of 10−12 cm3 molecule−1 s−1): trans-2-butene 9.26 ± 1.85; 2-methyl-1-butene 15.20 ± 3.00; 2-methyl-2-butene 19.10 ± 3.80; 2,3-dimethyl-2-butene 28.20 ± 5.60; α-pinene 22.20 ± 4.40. β-pinene 28.60 ± 5.70; 1,3-butadiene 57.50 ± 11.50; isoprene 74.20 ± 14.80; and 2,3-dimethyl-1,3-butadiene 81.7 ± 16.30. For the chloroalkenes and aromatic hydrocarbons the following rate coefficients were obtained (in units of 10−13 cm3 molecule−1 s−1): chloroethene 7.37 ± 1.92; 1,1-dichloroethene 3.66 ± 0.73; trichloroethene 0.90 ± 0.18; tetrachloroethene ≤ 0.1; benzene ≤ 0.10; toluene ≤ 0.10; p-xylene ≤ 0.10; and furan ≤ 0.10. With the exception of trans-2-butene, this study represents the first determination of the rate coefficients for all of the compounds. © 1996 John Wiley & Sons, Inc.  相似文献   

7.
The kinetics of the reactions of ground state oxygen atoms with trans-2-butene, cis-2-butene, 2-methylpropene, 2-methyl-2-butene, and 2,3-dimethyl-2-butene was investigated in the temperature range 200 to 370K. In this range, the rate constants are (in units 10?11 cm3 s?1): (1.1 ± 0.1) exp[+(180 ± 24)K/T]; (0.98 ± 0.09) exp[+(149 ± 23)K/T]; (1.14 ± 0.13) exp[+(128 ± 33)K/T]; (2.34 ± 0.16) exp[+(250 ± 16)K/T]; and (3.31 ± 0.50) exp[+(257 ± 36)K/T], respectively. The atoms were generated by the H2 laser photolysis of NO and detected by the time resolved chemiluminescence in the presence of NO. The concentrations of the O(3P) atoms were kept so low that secondary reactions with products are unimportant. © 1995 John Wiley & Sons, Inc.  相似文献   

8.
Rate constants for the gas-phase reactions of the four oxygenated biogenic organic compounds cis-3-hexen-1-ol, cis-3-hexenylacetate, trans-2-hexenal, and linalool with OH radicals, NO3 radicals, and O3 have been determined at 296 ± 2 K and atmospheric pressure of air using relative rate methods. The rate constants obtained were (in cm3 molecule?1 s?1 units): cis-3-hexen-1-ol: (1.08 ± 0.22) × 10?10 for reaction with the OH radical; (2.72 ± 0.83) × 10?13 for reaction with the NO3 radical; and (6.4 ± 1.7) × 10?17 for reaction with O3; cis-3-hexenylacetate: (7.84 ± 1.64) × 10?11 for reaction with the OH radical; (2.46 ± 0.75) × 10?13 for reaction with the NO3 radical; and (5.4 ± 1.4) × 10?17 for reaction with O3; trans-2-hexenal: (4.41 ± 0.94) × 10?11 for reaction with the OH radical; (1.21 ± 0.44) × 10?14 for reaction with the NO3 radical; and (2.0 ± 1.0) × 10?18 for reaction with O3; and linalool: (1.59 ± 0.40) × 10?10 for reaction with the OH radical; (1.12 ± 0.40) × 10?11 for reaction with the NO3 radical; and (4.3 ± 1.6) × 10?16 for reaction with O3. Combining these rate constants with estimated ambient tropospheric concentrations of OH radicals, NO3 radicals, and O3 results in calculated tropospheric lifetimes of these oxygenated organic compounds of a few hours. © 1995 John Wiley & Sons, Inc.  相似文献   

9.
Syntheses of (±)-2-exo-cyano-1-methyl-7-oxabicyclo[2.2.1]hept-5-en-2-endo-yl acetate ( 1 ) and of (±)-1-methyl-7-oxabicyclo[2.2.1]hept-5-en-2-one ( 2 ) are reported. The additon of PhSeCl to 1 afforded (±)-5-endo-chloro-2-exo-cyano-1-methyl-6-exo-(phenylselenenyl)-7-oxabicyclo[2.2.1]hept-2-endo-yl acetate ( 6 ), whereas 2 added to PhSeCl with the opposite regioselectivity giving (±)-6-endo-chloro-1-methyl-5-exo-(phenylselenenyl)-7-oxabicyclo[2.2.1]heptan-2-one ( 7 ). These adducts were converted into 5-chloro-1-methyl-7-oxabicyclo[2.2.1]hept-5-en-2-one ( 9 ) and 6-chloro-1-methyl-7-oxabicyclo[2.2.1]hept-5-en-2-one ( 10 ), respectively.  相似文献   

10.
The gas-phase reaction of ozone with eight alkenes including six 1,1-disubstituted alkenes has been investigated at ambient T (285–298 K) and p = 1 atm. of air. The reaction rate constants are, in units of 10−18 cm3 molecule−1 s−1, 9.50 ± 1.23 for 3-methyl-1-butane, 13.1. ± 1.8 for 2-methyl-1-pentene, 11.3 ± 3.2 for 2-methyl-1,3-butadiene (isoprene), 7.75 ± 1.08 for 2,3,3-trimethyl-1-butene, 3.02 ± 0.52 for 3-methyl-2-isopropyl-1-butene, 3.98 ± 0.43 for 3,4-diethyl-2-hexene, 1.39 ± 17 for 2,4,4-trimethyl-2-pentene, and >370 for (cis + trans)-3,4-dimethyl-3-hexene. For isoprene, results from this study and earlier literature data are consistent with: k (cm3 molecule−1 s−1) = 5.59 (+ 3.51, &minus 2.16) × 10−15 e(−3606±279/RT), n = 28, and R = 0.930. The reactivity of the other alkenes, six of which have not been studied before, is discussed in terms of alkyl substituent inductive and steric effects. For alkenes (except 1,1-disubstituted alkenes) that bear H, CH3, and C2H5 substituents, reactivity towards ozone is related to the alkene ionization potential: In k<(10−18 cm3 molecule−1 s−1) = (32.89 ± 1.84) − (3.09 ± 0.20) IP (eV), n = 12, and R = 0.979. This relationship overpredicts the reactivity of C≥3 1-alkenes, of 1,1-disubstituted alkenes, and of alkenes with bulky substituents, for which reactivity towards ozone is lower due to substituent steric effects. The atmospheric persistence of the alkenes studied is briefly discussed. © 1996 John Wiley & Sons, Inc.  相似文献   

11.
Rate constants for the gas-phase reactions of O(3P) atom with a series of monoterpenes have been determined at ambient temperature (ca. 302–309 K) and atmospheric pressure using a relative rate technique. Using the literature rate constants for O(3P) + isobutene, cis and trans-2-butene, 3-methyl-1-butene, 2-methyl-2-butene, and 2,3-dimethyl-2-butene as the standards, the O(3P) rate constants derived for the terpenes (in units of 10−11 cm3 molecule−1s −1) are 2.8 ± 0.4 for α-pinene, 2.8 ± 0.5 for β-pinene, 3.1 ± 0.5 for Δ 3-carene, 3.5 ± 0.5 for 2-carene, 2.6 ± 0.5 for camphene, 7.6 ± 1.2 for d-limonene, 9.0 ± 1.6 for γ-terpinene, and 10.7 ± 1.6 for terpinolene. The relative rate constants in this work agreed with literature values to within ± 10% for the standard alkenes, and to within ± ca. 35% for the terpenes. © 1996 John Wiley & Sons, Inc.  相似文献   

12.
A density functional theory (DFT) study of the mechanisms of carbonyl oxide reactions from geraniol-trans, 6-methyl-5-hepten-2-one, and 6-hydroxy-4-methyl-4-hexenal ozonolysis is presented. The geometries, energies, and harmonic vibrational frequencies of each stationary point were determined by B3LYP/6-31(d,p) and BH&HLYP/cc-pVDZ methods. According to the calculations, the ozonolysis reactions are initiated by the formation of van der Waals (VDW) complexes to yield primary ozonides, which rapidly open to carbonyl oxide compounds. These carbonyl oxide compounds react to form dioxanes and hydroperoxides. The hydroperoxides react by isomerization to form stable products. Glyoxal and methyl-glyoxal have been identified as the final product from geraniol-trans, 6-methyl-5-hepten-2-one, and 6-hydroxy-4-methyl-4-hexenal ozonolysis. Our results are in good agreement with the experimental studies.  相似文献   

13.
The photolysis of SO2 at 3130 Å, FWHM = 165 Å, and 22°C has been investigated in the presence of cis- and trans-2-pentene. Quantum yields for the SO2 photosensitized isomerization of one isomer to the other have been made for a variation in the [SO2]/[C5H10] ratio of 3.41–366 for cis-2-C5H10 and of 1.28–367 for trans-2-C5H10. A kinetic analysis of each of these systems permitted new estimates to be made for the SO2 collisionally induced intersystem crossing ratio at 3130 Å from SO2(1B1) to SO2(3B1). The estimates of k1a/(k1a + k1b) obtained are 0.12 ± 0.01 and 0.12 ± 0.02 (two different kinetic analyses in the cis-2-C5H10 study) and 0.20 ± 0.05 and 0.20 ± 0.04 (two different kinetic analyses in the trans-2-C5H10 study). Collisionally induced intersystem crossing ratios of k2a/(k2a + k2b) = 0.51 ± 0.10 and k3a/(k3a + k3b) = 0.62 ± 0.12 were obtained for cis- and trans-2-pentene, respectively. Quenching rate constants at 22°C for removal of SO2(3B1) molecules by cis- and trans-2-C5H10 were estimated as (1.00 ± 0.29) × 1011 l./mole·sec and (0.857 ± 0.160) × 1011 l./mole/sec, respectively. Prolonged irradiations, extrapolated to infinite irradiation times, for mixtures initially containing SO2 and pure isomer, either the cis or trans, yielded a photostationary composition of [trans-2-pentene]/[cis-2-pentene] = 2.1 ± 0.1.  相似文献   

14.
Using a relative rate method, rate constants for the gas-phase reactions of 2-methyl-3-buten-2-ol (MBO) with OH radicals, ozone, NO3 radicals, and Cl atoms have been investigated using FTIR. The measured values for MBO at 298±2 K and 740±5 torr total pressure are: kOH=(3.9±1.2)×10−11 cm3 molecule−1 s−1, kO3=(8.6±2.9)×10−18 cm3 molecule−1 s−1, k=(8.6±2.9)×10−15 cm3 molecule−1 s−1, and kCl=(4.7±1.0)×10−10 cm3 molecule−1 s−1. Atmospheric lifetimes have been estimated with respect to the reactions with OH, O3, NO3, and Cl. The atmospheric relevance of this compound as a precursor for acetone is, also, briefly discussed. © 1998 John Wiley & Sons, Inc. Int J Chem Kinet: 30: 589–594, 1998  相似文献   

15.
A 1:1 mixture of the racemic trans- and cis-1-p-menthene-3,8-diols ((±)- 3 and (±)- 4 , resp.) was readily prepared in 3 steps starting from 3-methyl-2-cyclohexen-1-one. The relative configuration of the diols, purified via the corresponding cyclocarbonates, was assigned by 1H-NMR spectroscopy and found to be at variance with tentative claims in the literature. Optically active samples of 3 and 4 were prepared by resolution of the racemates with (R)-1-phenylethylamine. The absolute configuration of the resulting diols was determined by chemical correlation with standards of known absolute configuration.  相似文献   

16.
The photolysis of SO2 at 3712 Å in the presence of the 1,2-dichloroethylenes has been investigated at 22deg;C. The data are consistent with the SO2(3B1) photosensitized isomerization of the 1,2-dichloroethylene isomer. A kinetic treatment of the initial quantum yield data was consistent with the formation of a polarized charge-transfer intermediate whenever SO2(3B1) molecules and one of the 1,2-dichloroethylene isomers collide which ultimately decays unimolecularly to the cis-isomer with a probability of 0.70 ± 0.26 and to the trans-isomer with a 0.37 ± 0.16 probability. Quenching rate constants for removal of SO2(3B1) molecules by cis- and trans-1,2-dichloroethylene have been estimated from quantum yield data and from laser excited phosphorescence lifetimes using an excitation wavelength of 3130 Å. Estimates of the quenching rate constant (units of 1./mole ± sec) are for the cis-isomer, (1.63 ± 0.71) × 1010, quantum yield data, and (2.44 ± 0.11) × 1010, lifetime data; and for the trans-isomer,(2.59 ± 0.09)×1010, lifetime data, and (2.35 ±0.89) × 1010, quantum yield data. An experimentally determined photostationary composition,[cis-C2Cl2H2]/[trans-C2Cl2H2] = 1.8 - 0.1, was in good agreement with a value of 2.00 - 1.15 which was predicted from rate constants derived in this study.  相似文献   

17.
Relative rate constants for the reactions of hydroxyl radicals with a series of alkyl substituted olefins were measured by competitive reactions between pairs of olefins at 298 ± 2 K and 1 atmospheric pressure. Hydroxyl radicals were produced by the photolysis of H2O2 with 254-nm irradiation. The obtained rate constants were (× 10?11 cm3 molecule?1 s?1): 2.53 ± 0.06, propylene; 5.49 ± 0.17, cis-2-butene; 5.47 ± 0.1, isobutene; 6.46 ± 0.13, 2-methyl-1-butene; 6.37 ± 0.16, cis-2-pentene; 6.23 ± 0.1, 2-methyl-1-pentene; 8.76 ± 0.14, 2-methyl-2-pentene; 6.24 ± 0.08, trans-4-methyl-2-pentene; 10.3 ± 0.1, 2,3-dimethyl-2-butene; 9.94 ± 0.1, 2,3-dimethyl-2-pentene; 5.59 ± 0.07, trans-4,4-dimethyl-2-pentene. A trend in alkyl substituent effect on the rate constant was found, which is useful to predict kOH on the basis of the number of alkyl substituents on the double bond.  相似文献   

18.
Rate coefficients, k1(T), for the gas-phase reaction of the OH radical with furan-2,5-dione (maleic anhydride (MA), C4H2O3), a biomass burning related compound, were measured under pseudo–first-order conditions in OH using the pulsed laser photolysis–laser-induced fluorescence method over a range of temperature (283-374 K) and bath gas pressure (50-200 Torr; He or N2). k1(T) was found to be independent of pressure over this range with k1(283-374 K) = (1.55 ± 0.20) × 10−12 exp[(−410 ± 44)/T) cm3 molecule−1 s−1 and k1(296 K) = (3.93 ± 0.28) × 10−13 cm3 molecule−1 s−1, where the uncertainties are 2σ and the preexponential term includes the estimated systematic error. The atmospheric lifetime of MA with respect to OH reactive loss is estimated to be ∼15 days. The present results are compared with a previous room temperature relative rate study of the OH + MA reaction, and the significant discrepancy between the studies is discussed; the present results are approximately a factor of 4 lower. It is also noteworthy that the experimentally measured k1(296 K) value obtained in this work is nearly a factor of 110 less than estimated by a structure activity relationship based on trends in ionization potential. Based in part on a computational evaluation, an atmospheric degradation mechanism of MA is proposed.  相似文献   

19.
The temperature dependence of the rate coefficients for the OH radical reactions with iso-propyl acetate (k1), iso-butyl acetate (k2), sec-butyl acetate (k3), and tert-butyl acetate (k4) have been determined over the temperature range 253–372 K. The Arrhenius expressions obtained are: k1=(0.30±0.03)×10−12 exp[(770±52)/T]; k2=(109±0.14)×10−12 exp[(534±79)/T]; k3=(0.73±0.08)×10−12 exp[(640±62)/T]; and k4=(22.2±0.34)×10−12 exp[−(395±92)/T] (in units of cm3 molecule−1 s−1). At room temperature, the rate constants obtained (in units of 10−12 cm3 molecule−1 s−1) were as follows: iso-propyl acetate (3.77±0.29); iso-butyl acetate (6.33±0.52); sec-butyl acetate (6.04±0.58); and tert-butyl acetate (0.56±0.05). Our results are compared with the previous determinations and discussed in terms of structure-activity relationships. © 1997 John Wiley & Sons, Inc. Int J Chem Kinet: 29: 683–688, 1997.  相似文献   

20.
Quantum yield measurements for the SO2(3B1) photosensitized isomerization of cis-1,2-difluoroethylene have been made at 3712 Å and 22°C. The [SO2]/[cis-C2F2H2] ratio was varied from 47.4 to 455 and the quantum yield measurements over this variation of concentration ratios were consistent with a mechanism in which SO2(3B1) molecules and the cis isomer form a collision intermediate which decomposes with a probability of 0.42 ± 0.17 and 0.58 ± 0.17 of producing trans- and cis-1,2-difluoroethylene, respectively. When SO2 was subjected to prolonged irradiations in the presence of initially either pure cis- or pure trans-1,2-difluoroethylene, a photostationary composition, [cis]/[trans] = 1.0 ± 0.2, was obtained. The rate constant at 22°C for removal of SO2(3B1) molecules by cis-1,2-difluoroethylene was estimated to be (1.72 ± 0.72) × 1010 1./mole · sec.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号