首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Fully atomistic molecular dynamics (MD) simulations and NMR spectroscopy were employed to get insights about the molecular details of drug-dendrimer supramolecular association phenomena, using piroxicam (PRX) and the third generation poly(amido amine) (PAMAM-G3) dendrimer as model systems. Theoretical results concerning the complex stoichiometry suggest that PRX forms drug-dendrimer complexes of the type 24:1 at pH 7.0. This result was validated with the experimental quantities obtained from aqueous solubility profiles, which led to an empiric stoichiometry of 23:1 for the PRX:PAMAM-G3 system. The predicted binding mode between PRX and PAMAM-G3 accounts for the preferred encapsulation of the drug inside dendrimer cavities, which is mainly driven by van der Waals and hydrogen bonding interactions, and to a lesser extent, for the external association of the guest through electrostatic contacts with the positively charged amino groups of PAMAM periphery. The binding mode obtained from MD simulations was confirmed with 2D-NOESY experiments, which evidence the preferred internal complexation of PRX with PAMAM-G3. The predominance of internal encapsulation over external contacts in the PRX:PAMAM-G3 system differs from the general behaviour expected for acidic anionic guests, for which external electrostatic interactions with the positively charged PAMAM surface have been postulated as the most relevant factor for drug association.  相似文献   

2.
The method of two-dimensional heteronuclear relayed correlation spectroscopy was used to establish the assignment of the severely overcrowded part of the proton spectrum of menthol by relating it to the previously assigned carbon spectrum. Extrapolation of the signal-to-noise ratio obtained with overnight data accumulation on a 10 mM solution suggests that this experiment should be feasible on as little as 10 mg of a moderate-sized organic compound.  相似文献   

3.
The dependence of the individual mean square displacement of rare gases in binary mixtures is studied by a combined experimental and theoretical approach. We show that the diffusion constant can be varied in a considerable range by changing the molar fractions of the mixtures. On the experimental side, NMR diffusion measurements are done on hyperpolarized 3He and 129Xe, mixed with several inert buffer gases, in the presence of a magnetic field gradient. The results are compared to diffusion coefficients obtained from atomistic molecular dynamics simulations based on Lennard-Jones type potentials of the corresponding gas mixtures, and to appropriate analytical expressions, yielding very good mutual agreement. This study is the first quantitative validation of the effects of the mutual interactions between gas particles on the individual diffusion properties. It is shown that the dependency of gas phase diffusion properties on the local chemical environment may not be neglected, e.g. in diffusion-controlled chemical reactions.  相似文献   

4.
5.
6.
The conformational preference of the human milk oligosaccharide lacto-N-neotetraose, beta-d-Galp-(1 --> 4)-beta-d-GlcpNAc-(1 --> 3)-beta-d-Galp-(1 --> 4)-d-Glcp, has been analyzed using (1)H,(1)H T-ROESY and (1)H,(13)C trans-glycosidic J coupling experiments in isotropic solution and (1)H,(13)C residual dipolar couplings (RDCs) obtained in lyotropic liquid crystalline media. Molecular dynamics simulations of the tetrasaccharide with explicit water as the solvent revealed that two conformational states are significantly populated at the psi glycosidic torsion angle, defined by C(anomeric)-O-C-H, of the (1 --> 3)-linkage. Calculation of order parameters, related to the molecular shape, were based on the inertia tensor and fitting of experimental RDCs to different conformational states showed that psi(+) > 0 degrees is the major and psi(-) < 0 degrees is the minor conformation in solution, in complete agreement with a two-state analysis based on the T-ROESY data. Attention was also given to the effect of salt (200 mM NaCl) in the anisotropic medium, which was a ternary mixture of n-octyl-penta(ethylene glycol), n-octanol, and D(2)O.  相似文献   

7.
Two-dimensional (2D) covariance NMR spectroscopy, which has originally been established to extract homonuclear correlations (HOMCOR), is extended to include heteronuclear correlations (HETCOR). In a (13)C/(15)N 2D chemical shift correlation experiment, (13)C and (15)N signals of a polycrystalline sample of (13)C, (15)N-labeled amino acid are acquired simultaneously using a dual-receiver NMR system. The data sets are rearranged for the covariance data processing, and the (13)C-(15)N heteronuclear correlations are obtained together with the (13)C-(13)C and (15)N-(15)N homonuclear correlations. The present approach retains the favorable feature of the original covariance HOMCOR that the spectral resolution along the indirect dimension is given by that of the detection dimension. As a result, much fewer amounts of data are required to obtain a well-resolved 2D spectrum compared to the case of the conventional 2D Fourier-Transformation (FT) scheme. Hence, one can significantly save the experimental time, or enhance the sensitivity by increasing the number of signal averaging within a given measurement time.  相似文献   

8.
The structural transition between two alternate conformations of bistable RNAs has been characterized by time-resolved NMR spectroscopy. The mechanism, kinetics, and thermodynamics underlying the global structural transition of bistable RNAs were delineated. Both bistable RNA conformations and a partial unstructured RNA of identical sequence could be trapped using photolabile protecting groups. This trapping allowed for an investigation of the initial folding from an unfolded RNA to one of the preferred conformations of the bistable RNA and of the structural transitions involved. Folding of the secondary structure elements occurs rapidly, while the global structural transition of the bistable RNA occurs on a time scale of minutes and shows marked temperature dependence. Comparison of these results with bistable systems previously investigated leads to the prediction of activation enthalpies (DeltaH++) associated with global structural transitions in RNA.  相似文献   

9.
A molecular dynamics simulation study is presented for the relaxation of the polarizability anisotropy in liquid mixtures of formamide and water, using a dipolar induction scheme that involves the intrinsic polarizability and first hyperpolarizability tensors of the molecules, and the dipole-quadrupole polarizability of water species. The long time diffusive decay of the collective polarizability anisotropy correlations exhibits a substantial slowing down as the formamide mole fraction increases in the mixture. The diffusive times for the polarizability relaxation obtained from the authors' simulations are in good agreement with optical Kerr effect experimental data, and they are found to correlate nearly linearly with the estimated mean lifetimes of the hydrogen bonds within the mixture, suggesting that the relaxation of the hydrogen bond network is responsible to some extent for the collective relaxation of the polarizability anisotropy of the mixture. The short time behavior of the polarizability anisotropy relaxation was investigated by computing the nuclear response function, R(t), which is very rapidly dominated by the formamide contribution as it is added to water, due to the much larger polarizability anisotropy of formamide molecules compared to that of water. Several contributions to the Raman spectrum were also analyzed as a function of composition, and the dynamical origin of the different bands was determined.  相似文献   

10.
A new technique is proposed to indirectly record with high sensitivity the nuclear magnetic resonance of nuclei with a low gyromagnetic ratio. The method relies on a coherent transfer of transverse magnetization to nuclei of high gyromagnetic ratio.  相似文献   

11.
Human milk oligosaccharides (HMOs) are important as prebiotics since they stimulate the growth of beneficial bacteria in the intestine and act as receptor analogues that can inhibit the binding of pathogens. The conformation and dynamics of the HMO Lacto-N-fucopentaose 2 (LNF-2), α-L-Fucp-(1 → 4)[β-D-Galp-(1 → 3)]-β-D-GlcpNAc-(1 → 3)-β-D-Galp-(1 → 4)-D-Glcp, having a Lewis A epitope, has been investigated employing NMR spectroscopy and molecular dynamics (MD) computer simulations. 1D (1)H,(1)H-NOESY experiments were used to obtain proton-proton cross-relaxation rates from which effective distances were deduced and 2D J-HMBC and 1D long-range experiments were utilized to measure trans-glycosidic (3)J(CH) coupling constants. The MD simulations using the PARM22/SU01 force field for carbohydrates were carried out for 600 ns with explicit water as solvent which resulted in excellent sampling for flexible glycosidic torsion angles. In addition, in vacuo MD simulations were performed using an MM3-2000 force field, but the agreement was less satisfactory based on an analysis of heteronuclear trans-glycosidic coupling constants. LNF-2 has a conformationally well-defined region consisting of the terminal branched part of the pentasaccharide, i.e., the Lewis A epitope, and a flexible β-D-GlcpNAc-(1 → 3)-β-D-Galp-linkage towards the lactose unit, which is situated at the reducing end. For this β-(1 → 3)-linkage a negative ψ torsion angle is favored, when experimental NMR data is combined with the MD simulation in the analysis. In addition, flexibility on a similar time scale, i.e., on the order of the global overall molecular reorientation, may also be present for the ? torsion angle of the β-D-Galp-(1 → 4)-D-Glcp-linkage as suggested by the simulation. It was further observed from a temperature variation study that some (1)H NMR chemical shifts of LNF-2 were highly sensitive and this study indicates that Δδ/ΔT may be an additional tool for revealing conformational dynamics of oligosaccharides.  相似文献   

12.
Weak molecular interactions such as those in pyridine—iodine, benzene—iodine and benzene—chloroform systems oriented in thermotropic liquid crystals have been studied from the changes of the order parameters as a result of complex formation. The results indicate the formation of at least two types of charge transfer complexes in pyridine—iodine solutions. The pi-complexes in benzene—chloroform and benzene—iodine mixtures have also been detected. No detectable changes in the inter-proton distances in these systems were observed.  相似文献   

13.
Polyunsaturated phospholipids are known to be important with regard to the biological functions of essential fatty acids, for example, involving neural tissues such as the brain and retina. Here we have employed two complementary structural methods for the study of polyunsaturated bilayer lipids, viz. deuterium ((2)H) NMR spectroscopy and molecular dynamics (MD) computer simulations. Our research constitutes one of the first applications of all-atom MD simulations to polyunsaturated lipids containing docosahexaenoic acid (DHA; 22:6 cis-Delta(4,7,10,13,16,19)). Structural features of the highly unsaturated, mixed-chain phospholipid, 1-palmitoyl-2-docosahexaenoyl-sn-glycero-3-phosphocholine (PDPC), have been studied in the liquid-crystalline (L(alpha)) state and compared to the less unsaturated homolog, 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC). The (2)H NMR spectra of polyunsaturated bilayers are dramatically different from those of less unsaturated phospholipid bilayers. We show how use of MD simulations can aid in interpreting the complex (2)H NMR spectra of polyunsaturated bilayers, in conjunction with electron density profiles determined from small-angle X-ray diffraction studies. This work clearly demonstrates preferred helical and angle-iron conformations of the polyunsaturated chains in liquid-crystalline bilayers, which favor chain extension while maintaining bilayer flexibility. The presence of relatively long, extended fatty acyl chains may be important for solvating the hydrophobic surfaces of integral membrane proteins, such as rhodopsin. In addition, the polyallylic DHA chains have a tendency to adopt back-bended (hairpin-like) structures, which increase the interfacial area per lipid. Finally, the material properties have been analyzed in terms of the response of the bilayer to mechanical stress. Simulated bilayers of phospholipids containing docosahexaenoic acid were less sensitive to the applied surface tension than were saturated phospholipids, possibly implying a decrease in membrane elasticity (area elastic modulus, bending rigidity). The above features distinguish DHA-containing lipids from saturated or monounsaturated lipids and may be important for their biological modes of action.  相似文献   

14.
15.
Orientational correlations in Langmuir monolayers of nematic and smectic-C liquid crystal (LC) phases are investigated by molecular dynamics simulation. In both phases, the orientational correlation functions decay algebraically yet with the different exponents of 1.9 and 0.2 for the nematic and the smectic-C monolayers, respectively. The power law decay, i.e., the absence of long-range orientational order, means the both monolayers should be the ideal 2D system with a continuous symmetry, whereas the large difference in the exponents of power law gives rise to the crucial difference in their optical properties; the nematic monolayer is optically isotropic while the smectic-C monolayer exhibits an anisotropy on the length scale of visible light. Since the exponent is inversely proportional to the molecular exchange energy, the averaged molecular interaction in the nematic monolayer should be an order of magnitude smaller than that in the smectic-C monolayer, which is ascribed to the low molecular density and the weak molecular dipole due to the water molecule. The relation between the molecular interaction and the orientational correlation calculated for the 2D LC system offers much information not only about the 2D LCs but also on the bulk system.  相似文献   

16.
Molecular motions of free and pheromone-bound mouse major urinary protein I, previously investigated by NMR relaxation, were simulated in 30 ns molecular dynamics (MD) runs. The backbone flexibility was described in terms of order parameters and correlation times, commonly used in the NMR relaxation analysis. Special attention was paid to the effect of conformational changes on the nanosecond time scale. Time-dependent order parameters were determined in order to separate motions occurring on different time scales. As an alternative approach, slow conformational changes were identified from the backbone torsion angle variances, and "conformationally filtered" order parameters were calculated for well-defined conformation states. A comparison of the data obtained for the free and pheromone-bound protein showed that some residues are more rigid in the bound form, but a larger portion of the protein becomes more flexible upon the pheromone binding. This finding is in general agreement with the NMR results. The higher flexibility observed on the fast (fs-ps) time scale was typically observed for the residues exhibiting higher conformational freedom on the ns time scale. An inspection of the hydrogen bond network provided a structural explanation for the flexibility differences between the free and pheromone-bound proteins in the simulations.  相似文献   

17.
Two-dimensional protein (ferritin) aggregates with a square lattice symmetry, which were formed within a thin liquid layer on a mercury surface, were studied by molecular dynamics (MD) simulation. For the simulation, the ferritin molecule was modeled by an assembly of 49 spheres, and the intermolecular interactions were given by simple formulae. During the simulation, molecules were confined within a layer, which corresponds to the thin liquid layer. An annealing MD simulation was done starting from a random molecular configuration within the layer, and aggregates with the square lattice symmetry were also obtained. To study the stability of aggregates, dissociation processes of the aggregates were analyzed using MD simulations at room temperature. Interactions between the nearest-neighbor molecules were regarded as bonds. Mean bond energies and correlation coefficients between the bond energies were calculated from the MD trajectories. A decay profile according to the dissociation was obtained, yielding a dissociation rate constant. Buried bonds were stronger than peripheral bonds. The larger the aggregate size, the stronger the bond for each of the buried and peripheral bonds. A simple theoretical account, which is applicable to a general bonded network, was introduced to analyze the dynamics of the aggregates. © 1994 by John Wiley & Sons, Inc.  相似文献   

18.
We applied the multibaric-multithermal (MUBATH) molecular dynamics (MD) algorithm to an alanine dipeptide in explicit water. The MUBATH MD simulation covered a wide range of conformational space and sampled the states of PII, C5, alphaR, alphaP, alphaL, and C7(ax). On the other hand, the conventional isobaric-isothermal simulation was trapped in local-minimum free-energy states and sampled only a few of them. We calculated the partial molar enthalpy difference DeltaH and partial molar volume difference DeltaV among these states by the MUBATH simulation using the AMBER parm99 and AMBER parm96 force fields and two sets of initial conditions. We compared these results with those from Raman spectroscopy experiments. The Raman spectroscopy data of DeltaH for the C5 state against the PII state agreed with both MUBATH data with the AMBER parm96 and parm99 force fields. The partial molar enthalpy difference DeltaH for the alphaR state and the partial molar volume difference DeltaV for the C5 state by the Raman spectroscopy agreed with those for the AMBER parm96 force field. On the other hand, DeltaV for the alphaR state by the Raman spectroscopy was consistent with our AMBER-parm99 force-field result. All the experimental results fall between those of simulations using AMBER parm96 and parm99 force fields, suggesting that the ideal force-field parameters lie between those of AMBER parm96 and parm99.  相似文献   

19.
A combined solid-state NMR and Molecular Dynamics simulation study of cellulose in urea aqueous solution and in pure water was conducted. It was found that the local concentration of urea is significantly enhanced at the cellulose/solution interface. There, urea molecules interact directly with the cellulose through both hydrogen bonds and favorable dispersion interactions, which seem to be the driving force behind the aggregation. The CP/MAS 13C spectra was affected by the presence of urea at high concentrations, most notably the signal at 83.4 ppm, which has previously been assigned to C4 atoms in cellulose chains located at surfaces parallel to the (110) crystallographic plane of the cellulose Iβ crystal. Also dynamic properties of the cellulose surfaces, probed by spin-lattice relaxation time 13CT 1 measurements of C4 atoms, are affected by the addition of urea. Molecular Dynamics simulations reproduce the trends of the T 1 measurements and lends new support to the assignment of signals from individual surfaces. That urea in solution is interacting directly with cellulose may have implications on our understanding of the mechanisms behind cellulose dissolution in alkali/urea aqueous solutions.  相似文献   

20.
The detection of NMR spectra of less sensitive nuclei coupled to protons may be significantly unproved by a two-dimensional Fourier transform technique involving a double transfer of polarization. The method is adequate to obtain natural abundance 15N spectra in small sample volumes with a commercial spectrometer  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号