首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The products of the gas‐phase reactions of the OH radical with n‐butyl methyl ether and 2‐isopropoxyethanol in the presence of NO have been investigated at 298 ± 2 K and 740 Torr total pressure of air by gas chromatography and in situ atmospheric pressure ionization tandem mass spectrometry. The products observed from n‐butyl methyl ether were methyl formate, propanal, butanal, methyl butyrate, and CH3C(O)CH2CH2OCH3 and/or CH3CH2C(O)CH2OCH3, with molar formation yields of 0.51 ± 0.11, 0.43 ± 0.06, 0.045 ± 0.010, ∼0.016, and 0.19 ± 0.04, respectively. Additional products of molecular weight 118, 149 and 165 were observed by API‐MS/MS analyses, with those of molecular weight 149 and 165 being identified as organic nitrates. The products observed and quantified from 2‐isopropoxyethanol were isopropyl formate and 2‐hydroxyethyl acetate, with molar formation yields of 0.57 ± 0.05 and 0.44 ± 0.05, respectively. For both compounds, the majority of the reaction products and reaction pathways are accounted for, and detailed reaction mechanisms are presented. The results of this product study are combined with previous literature product data to investigate the tropospheric reactions of R1R2C(Ȯ)OR radicals formed from ethers and glycol ethers, leading to a revised estimation method for the calculation of reaction rates of alkoxy radicals. © 1999 John Wiley & Sons, Inc. Int J Chem Kinet 31: 501–513, 1999  相似文献   

2.
Using a relative kinetic technique, rate coefficients have been measured, at 296 ± 2 K and 740 Torr total pressure of synthetic air, for the gas‐phase reaction of OH radicals with the dibasic esters dimethyl succinate [CH3OC(O)CH2CH2C(O)OCH3], dimethyl glutarate [CH3OC(O)CH2CH2CH2C(O)OCH3], and dimethyl adipate [CH3OC(O)CH2CH2CH2CH2C(O)OCH3]. The rate coefficients obtained were (in units of cm3 molecule?1 s?1): dimethyl succinate (1.89 ± 0.26) × 10?12; dimethyl glutarate (2.13 ± 0.28) × 10?12; and dimethyl adipate (3.64 ± 0.66) × 10?12. Rate coefficients have been also measured for the reaction of chlorine atoms with the three dibasic esters; the rate coefficients obtained were (in units of cm3 molecule?1 s?1): dimethyl succinate (6.79 ± 0.93) × 10?12; dimethyl glutarate (1.90 ± 0.33) × 10?11; and dimethyl adipate (6.08 ± 0.86) × 10?11. Dibasic esters are industrial solvents, and their increased use will lead to their possible release into the atmosphere, where they may contribute to the formation of photochemical air pollution in urban and regional areas. Consequently, the products formed from the oxidation of dimethyl succinate have been investigated in a 405‐L Pyrex glass reactor using Cl‐atom–initiated oxidation as a surrogate for the OH radical. The products observed using in situ Fourier transform infrared (FT‐IR) absorption spectroscopy and their fractional molar yields were: succinic formic anhydride (0.341 ± 0.068), monomethyl succinate (0.447 ± 0.111), carbon monoxide (0.307 ± 0.061), dimethyl oxaloacetate (0.176 ± 0.044), and methoxy formylperoxynitrate (0.032–0.084). These products account for 82.4 ± 16.4% C of the total reaction products. Although there are large uncertainties in the quantification of monomethyl succinate and dimethyl oxaloacetate, the product study allows the elucidation of an oxidation mechanism for dimethyl succinate. © 2001 John Wiley & Sons, Inc. Int J Chem Kinet 33: 431–439, 2001  相似文献   

3.
Using a relative rate method, rate constants have been measured for the gas-phase reactions of the OH radical with the dibasic esters dimethyl succinate [CH3OC(O)CH2CH2C(O)OCH3], dimethyl glutarate [CH3OC(O)CH2CH2CH2C(O)OCH3], and dimethyl adipate [CH3OC(O)CH2CH2CH2CH2C(O)OCH3] at 298±3 K. The rate constants obtained were (in units of 10−12 cm3 molecule−1 s−1): dimethyl succinate, 1.4±0.6; dimethyl glutarate, 3.3±1.1; and dimethyl adipate, 8.4±2.5, where the indicated errors include the estimated overall uncertainty of ±25% in the rate constant for cyclohexane, the reference compound. The calculated tropospheric lifetimes of these dibasic esters due to gas-phase reaction with the OH radical range from 1.4 days for dimethyl adipate to 8.3 days for dimethyl succinate for a 24 h average OH radical concentration of 1.0×106 molecule cm−3. © 1998 John Wiley & Sons, Inc. Int J Chem Kinet: 30: 471–474, 1998  相似文献   

4.
The relative rate technique has been used to measure the hydroxyl radical (OH) reaction rate constant of 2‐propoxyethanol (2PEOH, CH3CH2CH2OCH2CH2(OH)). 2PEOH reacts with OH with a bimolecular rate constant of (21.4 ± 6.0) × 10−12 cm3molecule−1s−1 at 297 ± 3 K and 1 atm total pressure, which is a little larger than previously reported [1]. Assuming an average OH concentration of 1 × 106 molecules cm−3, an atmospheric lifetime of 13 h is calculated for 2PEOH. In order to more clearly define this hydroxy ether's atmospheric reaction mechanism, an investigation into the OH + 2PEOH reaction products was also conducted. The OH + 2PEOH reaction products and yields observed were: propyl formate (PF, 47 ± 2%, CH3CH2CH2OC(O)H), 2 propoxyethanal (CH3CH2CH2OCH2C(O)H 15 ± 1%), and 2‐ethyl‐1,3‐dioxolane (5.4 ± 0.4%). The 2PEOH reaction mechanism is discussed in light of current understanding of oxygenated hydrocarbon atmospheric chemistry. The findings reported here can be related to other structurally similar alcohols and may impact regulatory tools such as ground‐level ozone‐forming potential calculations (incremental reactivity) [2]. © 1999 John Wiley & Sons, Inc. Int J Chem Kinet 31: 315–322, 1999  相似文献   

5.
The relative rate technique has been used to measure the hydroxyl radical (OH) reaction rate constant of ethyl 3-ethoxypropionate (EEP, CH3CH2(SINGLE BOND)O(SINGLE BOND)CH2CH2C(O)O(SINGLE BOND)CH2CH3). EEP reacts with OH with a bimolecular rate constant of (22.9±7.4)×10−12 cm3 molecule−1s−1 at 297±3 K and 1 atmosphere total pressure. In order to more clearly define EEP's atmospheric reaction mechanism, an investigation into the OH+EEP reaction products was also conducted. The OH+EEP reaction products and yields observed were: ethyl glyoxate (EG, 25±1% HC((DOUBLE BOND)O)C((DOUBLE BOND)O)(SINGLE BOND)O(SINGLE BOND)CH2CH3), ethyl (2-formyl) acetate (EFA, 4.86±0.2%, HC((DOUBLE BOND)O)(SINGLE BOND)CH2(SINGLE BOND)C((DOUBLE BOND)O)(SINGLE BOND)O(SINGLE BOND)CH2CH3), ethyl (3-formyloxy) propionate (EFP, 30±1%, HC((DOUBLE BOND)O)(SINGLE BOND)O(SINGLE BOND)CH2CH2(SINGLE BOND)C((DOUBLE BOND)O)(SINGLE BOND)O(SINGLE BOND)CH2CH3), ethyl formate (EF, 37±1%, HC((DOUBLE BOND)O)O(SINGLE BOND)CH2CH3), and acetaldehyde (4.9±0.2%, HC((DOUBLE BOND)O)CH3). Neither the EEP's OH rate constant nor the OH/EEP reaction products have been previously reported. The products' formation pathways are discussed in light of current understanding of oxygenated hydrocarbon atmospheric chemistry. © 1997 John Wiley & Sons, Inc.  相似文献   

6.
The Cl‐atom‐initiated oxidation of two esters, ethyl formate [HC(O)OCH2CH3] and ethyl acetate [CH3C(O)OCH2CH3], has been studied at pressures close to 1 atm as a function of temperature (249–325 K) and O2 partial pressure (50–700 Torr), using an environmental chamber technique. In both cases, Cl‐atom attack at the CH2 group is most important, leading in part to the formation of radicals of the type RC(O)OCH(O?)CH3 [R = H, CH3]. The atmospheric fate of these radicals involves competition between reaction with O2 to produce an anhydride compound, RC(O)OC(O)CH3, and the so‐called α‐ester rearrangement that produces an organic acid, RC(O)OH, and an acetyl radical, CH3C(O). For both species studied, the α‐ester rearrangement is found to dominate in air at 1 atm and 298 K. Barriers to the rearrangement of 7.7 ± 1.5 and 8.4 ± 1.5 kcal/mole are estimated for CH3C(O)OCH(O?)CH3 and HC(O)OCH(O?)CH3, respectively, leading to increased occurrence of the O2 reaction at reduced temperature. The data are combined with those obtained from similar studies of other simple esters to provide a correlation between the rate of occurrence of the α‐ester rearrangement and the structure of the reacting radical. © 2010 Wiley Periodicals, Inc. Int J Chem Kinet 42: 397–413, 2010  相似文献   

7.
The atmospheric chemistry of methyl ethyl ether, CH3CH2OCH3, was examined using FT‐IR/relative‐rate methods. Hydroxyl radical and chlorine atom rate coefficients of k (CH3CH2OCH3+OH) = (7.53 ± 2.86) × 10−12 cm3 molecule−1 s−1 and k (CH3CH2OCH3+Cl) = (2.35 ± 0.43) × 10−10 cm3 molecule−1 s−1 were determined (297 ± 2 K). The Cl rate coefficient determined here is 30% lower than the previous literature value. The atmospheric lifetime for CH3CH2OCH3 is approximately 2 days. The chlorine atom–initiated oxidation of CH3CH2OCH3 gives CH3C(O)H (9 ± 2%), CH3CH2OC(O)H (29 ± 7%), CH3OC(O)H (19 ± 7%), and CH3C(O)OCH3 (17 ± 7%). The IR absorption cross section for CH3CH2OCH3 is (7.97 ± 0.40) × 10−17 cm molecule−1 (1000–3100 cm−1). CH3CH2OCH3 has a negligible impact on the radiative forcing of climate.  相似文献   

8.
Formates are produced in the atmosphere as a result of the oxidation of a number of species, notably dialkyl ethers and vinyl ethers. This work describes experiments to define the oxidation mechanisms of isopropyl formate, HC(O)OCH(CH3)2, and tert‐butyl formate, HC(O)OC(CH3)3. Product distributions are reported from both Cl‐ and OH‐initiated oxidation, and reaction mechanisms are proposed to account for the observed products. The proposed mechanisms include examples of the α‐ester rearrangement reaction, novel isomerization pathways, and chemically activated intermediates. The atmospheric oxidation of isopropyl formate by OH radicals gives the following products (molar yields): acetic formic anhydride (43%), acetone (43%), and HCOOH (15–20%). The OH radical initiated oxidation of tert‐butyl formate gives acetone, formaldehyde, and CO2 as major products. IR absorption cross sections were derived for two acylperoxy nitrates derived from the title compounds. Rate coefficients are derived for the kinetics of the reactions of isopropyl formate with OH (2.4 ± 0.6) × 10?12, and with Cl (1.75 ± 0.35) × 10?11, and for tert‐butyl formate with Cl (1.45 ± 0.30) × 10?11 cm3 molecule?1 s?1. Simple group additivity rules fail to explain the observed distribution of sites of H‐atom abstraction for simple formates. © 2010 Wiley Periodicals, Inc. Int J Chem Kinet 42: 479–498, 2010  相似文献   

9.
The thermal dissociation of the atmospheric constituent methyl formate was probed by coupling pyrolysis with imaging photoelectron photoion coincidence spectroscopy (iPEPICO) using synchrotron VUV radiation at the Swiss Light Source (SLS). iPEPICO allows threshold photoelectron spectra to be obtained for pyrolysis products, distinguishing isomers and separating ionic and neutral dissociation pathways. In this work, the pyrolysis products of dilute methyl formate, CH3OC(O)H, were elucidated to be CH3OH + CO, 2 CH2O and CH4 + CO2 as in part distinct from the dissociation of the radical cation (CH3OH+• + CO and CH2OH+ + HCO). Density functional theory, CCSD(T), and CBS-QB3 calculations were used to describe the experimentally observed reaction mechanisms, and the thermal decomposition kinetics and the competition between the reaction channels are addressed in a statistical model. One result of the theoretical model is that CH2O formation was predicted to come directly from methyl formate at temperatures below 1200 K, while above 1800 K, it is formed primarily from the thermal decomposition of methanol.  相似文献   

10.
A bimolecular rate constant,kDHO, of (29 ± 9) × 10?12 cm3 molecule?1 s?1 was measured using the relative rate technique for the reaction of the hydroxyl radical (OH) with 3,5‐dimethyl‐1‐hexyn‐3‐ol (DHO, HC?CC(OH)(CH3)CH2CH(CH3)2) at (297 ± 3) K and 1 atm total pressure. To more clearly define DHO's indoor environment degradation mechanism, the products of the DHO + OH reaction were also investigated. The positively identified DHO/OH reaction products were acetone ((CH3)2C?O), 3‐butyne‐2‐one (3B2O, HC?CC(?O)(CH3)), 2‐methyl‐propanal (2MP, H(O?)CCH(CH3)2), 4‐methyl‐2‐pentanone (MIBK, CH3C(?O)CH2CH(CH3)2), ethanedial (GLY, HC(?O)C(?O)H), 2‐oxopropanal (MGLY, CH3C(?O)C(?O)H), and 2,3‐butanedione (23BD, CH3C(?O)C(?O)CH3). The yields of 3B2O and MIBK from the DHO/OH reaction were (8.4 ± 0.3) and (26 ± 2)%, respectively. The use of derivatizing agents O‐(2,3,4,5,6‐pentalfluorobenzyl)hydroxylamine (PFBHA) and N,O‐bis(trimethylsilyl)trifluoroacetamide (BSTFA) clearly indicated that several other reaction products were formed. The elucidation of these other reaction products was facilitated by mass spectrometry of the derivatized reaction products coupled with plausible DHO/OH reaction mechanisms based on previously published volatile organic compound/OH gas‐phase reaction mechanisms. © 2004 Wiley Periodicals, Inc. Int J Chem Kinet 36: 534–544, 2004  相似文献   

11.
The relative rate technique has been used to measure the hydroxyl radical (OH) reaction rate constant of +2-butanol (2BU, CH3CH2CH(OH)CH3) and 2-pentanol (2PE, CH3CH2CH2CH(OH)CH3). 2BU and 2PE react with OH yielding bimolecular rate constants of (8.1±2.0)×10−12 cm3molecule−1s−1 and (11.9±3.0)×10−12 cm3molecule−1s−1, respectively, at 297±3 K and 1 atmosphere total pressure. Both 2BU and 2PE OH rate constants reported here are in agreement with previously reported values [1–4]. In order to more clearly define these alcohols' atmospheric reaction mechanisms, an investigation into the OH+alcohol reaction products was also conducted. The OH+2BU reaction products and yields observed were: methyl ethyl ketone (MEK, (60±2)%, CH3CH2C((DOUBLEBOND)O)CH3) and acetaldehyde ((29±4)% HC((DOUBLEBOND)O)CH3). The OH+2PE reaction products and yields observed were: 2-pentanone (2PO, (41±4)%, CH3C((DOUBLEBOND)O)CH2CH2CH3), propionaldehyde ((14±2)% HC((DOUBLEBOND)O)CH2CH3), and acetaldehyde ((40±4)%, HC((DOUBLEBOND)O)CH3). The alcohols' reaction mechanisms are discussed in light of current understanding of oxygenated hydrocarbon atmospheric chemistry. Labeled (18O) 2BU/OH reactions were conducted to investigate 2BU's atmospheric transformation mechanism details. The findings reported here can be related to other structurally similar alcohols and may impact regulatory tools such as ground level ozone-forming potential calculations (incremental reactivity) [5]. © 1998 John Wiley & Sons, Inc. Int J Chem Kinet 30: 745–752, 1998  相似文献   

12.
Rate constants for a series of alcohols, ethers, and esters toward the sulfate radical (SO4?) have been directly determined using a laser photolysis set‐up in which the radical was produced by the photodissociation of peroxodisulfate anions. The sulfate radical concentration was monitored by following its optical absorption by means of time resolved spectroscopy techniques. At room temperature the following rate constants were derived: methanol ((1.6 ± 0.2) × 107 M?1 s?1); ethanol ((7.8 ± 1.2) × 107 M?1 s?1); tert‐butanol ((8.9 ± 0.3) × 105 M?1 s?1); diethyl ether ((1.8 ± 0.1) × 108 M?1 s?1); MTBE ((3.13 ± 0.02) × 107 M?1 s?1); tetrahydrofuran (THF) ((2.3 ± 0.2) × 108 M?1 s?1); hydrated formaldehyde ((1.4 ± 0.2) × 107 M?1 s?1); hydrated glyoxal ((2.4 ± 0.2) × 107 M?1 s?1); dimethyl malonate (CH3OC(O)CH2C(O)OCH3) ((1.28 ± 0.02) × 106 M?1 s?1); and dimethyl succinate (CH3OC(O)CH2CH2C(O)OCH3) ((1.37 ± 0.08) × 106 M?1 s?1) where the errors represent 2σ. For the two latter species, we also measured the temperature dependence of the corresponding rate constants. A correlation of these kinetics with the bond dissociation energy is also presented and discussed. © 2001 John Wiley & Sons, Inc. Int J Chem Kinet 33: 539–547, 2001  相似文献   

13.
The thermal decomposition of the atmospheric constituent ethyl formate was studied by coupling flash pyrolysis with imaging photoelectron photoion coincidence (iPEPICO) spectroscopy using synchrotron vacuum ultraviolet (VUV) radiation at the Swiss Light Source (SLS). iPEPICO allows photoion mass-selected threshold photoelectron spectra (ms-TPES) to be obtained for pyrolysis products. By threshold photoionization and ion imaging, parent ions of neutral pyrolysis products and dissociative photoionization products could be distinguished, and multiple spectral carriers could be identified in several ms-TPES. The TPES and mass-selected TPES for ethyl formate are reported for the first time and appear to correspond to ionization of the lowest energy conformer having a cis (eclipsed) configuration of the O = C (H)– O – C (H2)–CH3 and trans (staggered) configuration of the O= C (H)– O – C (H2)– C H3 dihedral angles. We observed the following ethyl formate pyrolysis products: CH3CH2OH, CH3CHO, C2H6, C2H4, HC(O)OH, CH2O, CO2, and CO, with HC(O)OH and C2H4 pyrolyzing further, forming CO + H2O and C2H2 + H2. The reaction paths and energetics leading to these products, together with the products of two homolytic bond cleavage reactions, CH3CH2O + CHO and CH3CH2 + HC(O)O, were studied computationally at the M06-2X-GD3/aug-cc-pVTZ and SVECV-f12 levels of theory, complemented by further theoretical methods for comparison. The calculated reaction pathways were used to derive Arrhenius parameters for each reaction. The reaction rate constants and branching ratios are discussed in terms of the residence time and newly suggest carbon monoxide as a competitive primary fragmentation product at high temperatures.  相似文献   

14.
A 4 K matrix ESR study shows that the molecular radical cations of isopropyl formate and acetate, produced radiolytically in halocarbon matrices at 4.2 K, undergo spontaneous rearrangement due to a selective intramolecular hydrogen shift from the tertiary CH bond in the isopropyl group to the carbonyl oxygen atom giving RC+(OH)OC(CH3)2, where R = H or CH3. The radical cation of tert-butyl acetate undergoes further fragmentation at the ester CO bond following a similar rearrangement to give an isobutene radical cation in CFCl3.  相似文献   

15.
The kinetics of the reaction of O + CH3OCH3 were investigated using fast-flow apparatus equipped with ESR and mass-spectrometric detection. The concentration of O(3P) atoms to CH3OCH3 was varied over an unusually large range. The rate constant for reaction was found to be k = (5.0 ± 1.0) × 1012 exp [(?2850 ± 200/RT)] cm3 mole?1 sec?1. The reaction O + CH3OH was studied using ESR detection. Based on an assumed stoichiometry of two oxygen atoms consumed per molecule of CH3OH which reacts, we obtain a value of k = (1.70 ± 0.66) × 1012 exp [(?2,280 ± 200/RT)] cm3 mole?1 sec?1 for the reaction The results obtained in this study are compared with the results from other workers on these reactions. The observation of essentially equal activation energies in these two reactions is indicative of approximately equal C? H bond strengths in CH3OCH3 and CH3OH. This is in agreement with recent measurements of these bond energies.  相似文献   

16.
Using silyl protected organic hydroxo compounds substitution of fluorine in IF5 is successful.Reacting IF5 with Si(OCH3)4 in CH3CN or SO2 using different molar ratios it was shown that in the series IF5?n(OCH3)n only the first member IF4(OCH3) (n=1) is stable enough to be isolated. The product in solution with n=2 bismutates to products with n=1 and n=3 if isolated as solids. The last one decomposes to the new oxo compound IF2O(OCH3) under elimination of CH3OCH3. With n=4,5 only redox reaction products could be isolated.IF2O(OCH3) can also be obtained by treating IF4(OCH3) with (CH3)6Si2O. Similarly reaction of IF5 with the disiloxane represents a new method to win IOF3. Excess of the oxygen transfer reagent leads to formation of IO2F and I2O5. An other oxo compound, IO(CH3COO)3, can be prepared by disolving IF5, IOF3 or IO2F in acetic acid anhydride.Reactions of IF5 with trimethylsilyl protected fluorinated benzoic acids RfCOOSi(CH3)3 (Rf = C6F5, 4HC6F4) appeared to be independent of the educts molar ratios because the only products are IF(RfCOO)4.In order to stabilize iodine (V) derivates with bifunctional chelating oxo ligands we applicated bis(trimethylsilyl) pinacolate, and in smooth reactions we yielded IF3[OC(CH3)2C(CH3)2O] and IF[OC(CH3)2  C(CH3)2O]2, in which iodine is part of five membered heterocyclic rings. The 19F-nmr-spectra are consistent with the diolate occupying the axiale and equatorial positions.An extension of the silyl method is the new synthesis of C6F5IF4 which could be obtained in the smooth reaction of IF5 with stochiometric amounts of Si(C6F5)4.  相似文献   

17.
Telechelic ( 8 ) and end-functionalized four-arm star polymers ( 9 ) were synthesized through the coupling reactions of end-functionalized living poly(isobutyl vinyl ether) ( 5; DP n ~ 10) with the bi-and tetrafunctional silyl enol ethers, H4-nC? [CH2OC6H4C(OSiMe3) = CH2]n ( 3: n = 2; 4: n = 4). The precursor polymers 5 were prepared by living cationic polymerization with functionalized initiators, CH3CH(Cl)OCH2CH2X(6), in conjunction with zinc chloride in methylene chloride at ?15°C. The initiators 6 were obtained by the addition of hydrogen chloride gas to vinyl ethers bearing pendant functional groups X , including acetoxy [? OC(O)CH3], styryl (? OCH2C6H4-p-CH = CH2), and methacryloyl [? OC(O)C(CH3) = CH2]. The coupling reactions with 3 and 4 in methylene chloride at ?15°C for 24 h afforded the end-functionalized multiarmed polymers ( 8 and 9 ) in high yield (>91%), where those with styryl or methacryloyl groups are new multifunctional macromonomers. © 1994 John Wiley & Sons, Inc.  相似文献   

18.
The relative rate technique has been used to measure the rate coefficient for the reaction of the hydroxyl radical (OH) with methyl isobutyrate (MIB, (CH3)2 CHC(O) O CH3) to be (1.7 ± 0.4) × 10−12cm3molecule−1s−1 at 297 ± 3 K and 1 atmosphere total pressure. To more clearly define MIB's atmospheric degradation mechanism, the products of the OH + MIB reaction were also determined. The observed products and their yields were: acetone (97 ± 1%, (CH3)2C(O)) and methyl pyruvate (MP, 3.3 ± 0.3%, CH3C(O)C(O) O CH3). The products' formation pathways are discussed in light of current understanding of the atmospheric chemistry of oxygenated organic compounds. © 1999 John Wiley & Sons, Inc. Int J Chem Kinet 31: 551–557, 1999  相似文献   

19.
The addition of dialkyl (R = Me or Et) carbonates to poly(oxyethylene)-based solid polymeric electrolytes resulted in enhanced ionic conductivities. Relatively high conductivities in lithium batteries with solutions of lithium salts in di(oligooxyethylene) carbonates such as R( OCH2 CH2 )nOC(O) O ( CH2CH2O )mR (R = Et, n = 1, 2, or 3, m = 0, 1, 2, or 3) and related carbonates were obtained. In this respect, related comb-shaped poly(oligooxyethylene carbonate) vinyl ethers of the type  CH2CH(OR) were prepared [R = ( OCH2 CH2 )nOC(O) O ( CH2CH2O )mR′; (1) n = 2 or 3, m = 0, R′ = Et; (2) n = 2 or 3; m = 3, R′ = Me]. The direct preparation of derived target polymers of this class by polymerization of the corresponding vinyl ether-type monomers could not be achieved because of a rapid in situ decarboxylative decomposition of these monomers (as formed) during the final step of their synthesis. Instead, a prepolymer was prepared by a living cationic polymerization of CH2CH (OCH2CH2 )n O C(O) CH3 (n = 2 or 3). The hydrolysis of its pendant ester groups, followed by the reaction of the hydrolyzed prepolymer with each of several alkyl chloroformates of the type Cl C(O) O( CH2CH2O )mR′ (m = 0, 2, or 3, R′ = Me or Et) resulted in the corresponding target polymers. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 2171–2183, 2002  相似文献   

20.
Pulse radiolysis techniques were used to measure the gas phase UV absorption spectra of the title peroxy radicals over the range 215–340 nm. By scaling to σ(CH3O2)240 nm = (4.24 ± 0.27) × 10?18, the following absorption cross sections were determined: σ(HO2)240 nm = 1.29 ± 0.16, σ(C2H5O2)240 nm = 4.71 ± 0.45, σ(CH3C(O)CH2O2)240 nm = 2.03 ± 0.22, σ(CH3C(O)CH2O2)230 nm = 2.94 ± 0.29, and σ(CH3C(O)CH2O2)310 nm = 1.31 ± 0.15 (base e, units of 10?18 cm2 molecule?1). To support the UV measurements, FTIR‐smog chamber techniques were employed to investigate the reaction of F and Cl atoms with acetone. The F atom reaction proceeds via two channels: the major channel (92% ± 3%) gives CH3C(O)CH2 radicals and HF, while the minor channel (8% ± 1%) gives CH3 radicals and CH3C(O)F. The majority (>97%) of the Cl atom reaction proceeds via H atom abstraction to give CH3C(O)CH2 radicals. The results are discussed with respect to the literature data concerning the UV absorption spectra of CH3C(O)CH2O2 and other peroxy radicals. © 2002 Wiley Periodicals, Inc. Int J Chem Kinet 34: 283–291, 2002  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号