首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 12 毫秒
1.
The chemisorption of NO on clean Pt(111), Rh/Pt(111) alloy, and Pd/Pt(111) alloy surfaces has been studied by first principles density functional theory (DFT) computations. It was found that the surface compositions of the surface alloys have very different effects on the adsorption of NO on Rh/Pt(111) versus that on Pd/Pt(111). This is due to the different bond strength between the two metals in each alloy system. A complex d-band center weighting model developed by authors in a previous study for SO2 adsorption is demonstrated to be necessary for quantifying NO adsorption on Pd/Pt(111). A strong linear relationship between the weighted positions of the d states of the surfaces and the molecular NO adsorption energies shows the closer the weighted d-band center is shifted to the Fermi energy level, the stronger the adsorption of NO will be. The consequences of this study for the optimized design of three-way automotive catalysts, (TWC) are also discussed.  相似文献   

2.
A semiclassical model is used to calculate energy transfer in collisions between CO and a Pt(111) surface. The sticking probability is found to be as large as 0.7–0.8 for small collision energies (≈0.14 eV). At higher energies (≈5 eV) it decreases to ≈0.3. Strong interaction between the adsorbed molecule and the phonons is observed.  相似文献   

3.
Methanol was used as a probe molecule to examine the reforming activity of oxygenates on NiPt(111) and CoPt(111) bimetallic surfaces, utilizing density functional theory (DFT) modeling, temperature-programmed desorption, and high-resolution electron energy loss spectroscopy (HREELS). DFT results revealed a correlation between the methanol and methoxy binding energies and the surface d-band center of various NiPt(111) and CoPt(111) bimetallic surfaces. Consistent with DFT predictions, increased production of H2 and CO from methanol was observed on a Ni surface monolayer on Pt(111), designated as Ni-Pt-Pt(111), as compared to the subsurface monolayer Pt-Ni-Pt(111) surface. HREELS was used to verify the presence and subsequent decomposition of methoxy intermediates on NiPt(111) and CoPt(111) bimetallic surfaces. On Ni-Pt-Pt(111) the methoxy species decomposed to a formaldehyde intermediate below 300 K; this species reacted at approximately 300 K to form CO and H2. On Co-Pt-Pt(111), methoxy was stable up to approximately 350 K and decomposed to form CO and H2. Overall, trends in methanol reactivity on NiPt(111) bimetallic surfaces were similar to those previously determined for ethanol and ethylene glycol.  相似文献   

4.
Atomic oxygen chemisorption has been studied for the fourfold hollow site of the Ni(100) surface and for the threefold hollow site of the Ni(111) surface. To model the Ni(100) surface, 10 different clusters in the range Ni5 to Ni41 were used, and for the Ni(111) surface, 11 different clusters in the range Ni13 to Ni43 were used. A detailed analysis of the orbital occupations of the cluster with and without oxygen for the different clusters shows that there are three different possible bonding mechanisms. In two of these, the basic feature is that a1 electrons of the cluster are kicked out by the oxygen 2pz orbital and moved to holes in the 2px, y orbitals. A picture where the oxygen electrons fit into the electronic structure of the cluster is emphasized. The third mechanism, which is applicable for only one cluster, can be described as the formation of two covalent bonds of E symmetry. The final best estimate of the oxygen chemisorption energy for the Ni(100) surface is about 130 kcal/mol, and for the Ni(111) surface, about 115 kcal/mol. In particular for the Ni(111) surface, an excited oxygen state with radical character is identified, which might be a catalytically important species. The excitation energy to reach this state should be on the order of 10 kcal/mol for the Ni(111) surface.  相似文献   

5.
采用密度泛函理论,对Pt(111)和Pt3Ni(111)表面上CO和O的单独吸附、共吸附以及CO的氧化反应进行了系统的研究. 结果表明, Pt3Ni(111)表面上CO的吸附弱于Pt(111)表面, O的吸附明显强于Pt(111)表面. 两个表面表现出相似的CO催化氧化活性. 表面Ni的存在不但稳定了O的吸附,同时也降低了过渡态O的能量.  相似文献   

6.
The Ewig—van Wazer NOCOR pseudopotential scheme is sued, with minor modifications, in SCF MO calculations on the interaction of a hydrogen atom with clusters of up to four platinum atoms. The electronic structures of the clusters and the nature of the metal—hydrogen bond are investigated; the results are compared with those of extended Hückel theory for the same systems.  相似文献   

7.
Classical molecular dynamics simulations of the interactions of water with oxidized Pt(111) and Pt/PtCo/Pt(3)Co(111) surfaces are performed by modeling water with the CF1 central force model that allows molecular dissociation and therefore the presence of other intermediates of the oxygen reduction reaction different from atomic oxygen. It is found that the water-surface oxide interactions do not affect the overall structure of the catalyst represented by an extended periodic slab. However, such interactions are affected by changes in the electrochemical potential which are simulated by higher values of the surface and atomic oxygen charges at increased oxygen coverage. Thus, electrochemical potential as well as the presence of protons and anions products of acid dissociation define the identity and the amount of oxygen reduction reaction intermediates such as OH or H(3)O. We observe agglomerations of water molecules over regions of the surface and the presence of OH and H(3)O in their vicinity. Our simulation model is able to qualitatively reproduce features of the degradation of the catalyst surface after oxidation and reduction cycles.  相似文献   

8.
Molecular dynamics (MD) simulations employing embedded atom method potentials and ultrahigh vacuum (UHV) experiments were carried out to study the mixing process between the Ni and Pt atoms in the Ni/Pt(111) bimetallic system. The barrier for a Ni atom to diffuse from the top surface to the subsurface layer is rather high (around 1.7 eV) as calculated using the nudged elastic band (NEB) method. Analysis of the relaxation dynamics of the Ni atoms showed that they undergo diffusive motion through a mechanism of correlated hops. At 600 K, all Ni atoms remain trapped on the top surface due to large diffusion barriers. At 900 K, the majority of Ni atoms diffuse to the second layer and at 1200 K diffusion to the bulk is observed. We also find that smaller Ni coverages and the presence of Pt steps facilitate the Ni-Pt mixing. By simulated annealing simulations, we found that in the mixed state, the Ni fraction oscillates between layers, with the second layer being Ni-richer at equilibrium. The simulation results at multiple time scales are consistent with the experimental data.  相似文献   

9.
镍和铂单晶(111)面上氢解离的比较研究周鲁,孙本繁,吕日昌,唐向阳,滕礼坚(中国科学院大连化学物理研究所分子反应动力学国家重点实验室,大连116023)关键词镍晶面,铂晶面,氢解离吸附,位能面,分子催化过渡金属镍和铂是催化加氢、脱氢以及临氢重整的重...  相似文献   

10.
Density functional theory was used to study the NH3 behavior on Ni monolayer covered Pt(111) and WC(001). The electronic structure of the surfaces, and the adsorption and decomposition of NH3 were calculated and compared. Ni atoms in the monolayer behave different from that in Ni(111). More dz2 electrons of Ni in monolayer covered systems were shifted to other regions compared to Ni(111), charge density depletion on this orbital is crucial to NH3 adsorption. NH3 binds more stable on Ni/Pt(111) and Ni/WC(001) than on Ni(111), the energy barriers of the first N-H bond scission were evidently lower on Ni/Pt(111) and Ni/WC(001) than on Ni(111), these are significant to NH3 decomposition. N recombination is the rate-limiting step, high reaction barrier implies that N2 is produced only at high temperatures. Although WC has similar properties to Pt, differences of the electronic structure and catalytic activities are observed for Ni/Pt(111) and Ni/WC(001), the energy barrier for the rate-determined step increases on Ni/WC(001) instead of decreasing on Ni/Pt(111) when compared to Ni(111). To design cheaper and better catalysts, reducing the N recombination barrier by modifying Ni/WC(001) is a critical question to be solved.  相似文献   

11.
Ni/Pt(111) bimetallic surfaces: unique chemistry at monolayer ni coverage.   总被引:1,自引:0,他引:1  
We have utilized the dehydrogenation and hydrogenation of cyclohexene as probe reactions to compare the chemical reactivity of Ni overlayers that are grown epitaxially on a Pt(111) surface. The reaction pathways of cyclohexene were investigated using temperature-programmed desorption, high-resolution electron energy loss (HREELS), and near edge X-ray absorption fine structure (NEXAFS) spectroscopy. Our results provide conclusive spectroscopic evidence that the adsorption and subsequent reactions of cyclohexene are unique on the monolayer Ni surface as compared to those on the clean Pt(111) surface or the thick Ni(111) film. HREELS and NEXAFS studies show that cyclohexene is weakly pi-bonded on monolayer Ni/Pt(111) but di-sigma-bonded to Pt(111) and Ni(111). In addition, a new hydrogenation pathway is detected on the monolayer Ni surface at temperatures as low as 245 K. By exposing the monolayer Ni/Pt(111) surface to D2 prior to the adsorption of cyclohexene, the total yield of the normal and deuterated cyclohexanes increases by approximately 5-fold. Furthermore, the reaction pathway for the complete decomposition of cyclohexene to atomic carbon and hydrogen, which has a selectivity of 69% on the thick Ni(111) film, is nearly negligible (<2%) on the monolayer Ni surface. Overall, the unique chemistry of the monolayer Ni/Pt(111) surface can be explained by the weaker interaction between adsorbates and the monolayer Ni film. These results also point out the possibility of manipulating the chemical properties of metals by controlling the overlayer thickness.  相似文献   

12.
We applied periodic density-functional theory to investigate the adsorption of HCN on x Ni@Pt(111) bimetallic surfaces(x = 1~4). The results have been compared with those obtained on pure Ni(111) and Pt(111) surfaces. For all bimetallic surfaces,HCN is preferentially tilted with the CN bond parallel to the surface,and adsorption energies increase with an increasing number of layer Ni atoms on the surface. The adsorption energies of HCN on all bimetallic surfaces are larger than that on the Pt(111) surface,whereas the adsorption energies of HCN on 3Ni@Pt(111) and 4Ni@Pt(111) are larger than that on the Ni(111) surface,indicating that the introduction of Ni to the Pt catalyst could increase the activity of bimetallic catalyst in the hydrogenation reaction for nitriles. Larger adsorption energy of HCN leads to a longer C–N bond length and a smaller CN vibrational frequency. The analysis of Bader charge and vibrational frequencies showed obvious weakening of the adsorbed C–N bond and an indication of sp2 hybridization of both carbon and nitrogen atoms.  相似文献   

13.
The dehydrogenation and decarbonylation of ethylene glycol and ethanol were studied using temperature programmed desorption (TPD) on Pt(111) and Ni/Pt(111) bimetallic surfaces, as probe reactions for the reforming of oxygenates for the production of H2 for fuel cells. Ethylene glycol reacted via dehydrogenation to form CO and H2, corresponding to the desired reforming reaction, and via total decomposition to produce C(ad), O(ad), and H2. Ethanol reacted by three reaction pathways, dehydrogenation, decarbonylation, and total decomposition, producing CO, H2, CH4, C(ad), and O(ad). Surfaces prepared by deposition of a monolayer of Ni on Pt(111) at 300 K, designated Ni-Pt-Pt(111), displayed increased reforming activity compared to Pt(111), subsurface monolayer Pt-Ni-Pt(111), and thick Ni/Pt(111). Reforming activity was correlated with the d-band center of the surfaces and displayed a linear trend for both ethylene glycol and ethanol, with activity increasing as the surface d-band center moved closer to the Fermi level. This trend was opposite to that previously observed for hydrogenation reactions, where increased activity occurred on subsurface monolayers as the d-band center shifted away from the Fermi level. Extrapolation of the correlation between activity and the surface d-band center of bimetallic systems may provide useful predictions for the selection and rational design of bimetallic catalysts for the reforming of oxygenates.  相似文献   

14.
Binetti M  Weisse O  Hasselbrink E  Komrowski AJ  Kummel AC 《Faraday discussions》2000,(117):313-20; discussion 331-45
We present experimental evidence that abstraction is a common mechanism (approximately 50%) in the dissociative chemisorption of oxygen on Al(111) at a translational energy of 0.5 eV. As a result of this mechanism, individual isolated O-atoms are observed in scanning tunneling microscopy (STM). At this translational energy ordinary dissociative chemisorption processes also occur, resulting in pairs of adatoms. The ejected O-atoms originating from the abstraction reaction are detected in the gas phase using laser spectrometry. Together, these observations provide compelling evidence for the abstraction mechanism.  相似文献   

15.
Density-functional theory including spin-orbit coupling and corrections for dispersion forces has been used to investigate the structural and magnetic properties of Pt(3) and Pt(4) clusters deposited on a graphene layer supported on a Ni(111) substrate. It is shown that the strong interaction of the Pt atoms with the Ni-supported graphene stabilizes a flat triangular and a slightly bent rhombic structure of the clusters. Pt atoms are located nearly on top of the C atoms of the graphene layer, slightly shifted towards the bridge positions because the Pt-Pt distances are larger than the C-C distances of the graphene sheet lattice-matched to the Ni support. The strong interaction with the substrate leads to a substantial reduction of both the spin and orbital moments of the Pt atoms, not only compared to the clusters in the gas-phase, but also compared to those adsorbed on a freestanding graphene layer. The trends in the magnetic moments and in the magnetic anisotropy of the cluster/substrate complex have been analyzed and it is demonstrated that the anisotropy is dominated by the Ni support.  相似文献   

16.
Sulfur, a pollutant known to poison fuel‐cell electrodes, generally comes from S‐containing species such as hydrogen sulfide (H2S). The S‐containing species become adsorbed on a metal electrode and leave atomic S strongly bound to the metal surface. This surface sulfur is completely removed typically by oxidation with O2 into gaseous SO2. According to our DFT calculations, the oxidation of sulfur at 0.25 ML surface sulfur coverage on pure Pt(111) and Ni(111) metal surfaces is exothermic. The barriers to the formation of SO2 are 0.41 and 1.07 eV, respectively. Various metals combined to form bimetallic surfaces are reported to tune the catalytic capabilities toward some reactions. Our results show that it is more difficult to remove surface sulfur from a Ni@Pt(111) surface with reaction barrier 1.86 eV for SO2 formation than from a Pt@Ni(111) surface (0.13 eV). This result is in good agreement with the statement that bimetallic surfaces could demonstrate more or less activity than to pure metal surfaces by comparing electronic and structural effects. Furthermore, by calculating the reaction free energies we found that the sulfur oxidation reaction on the Pt@Ni(111) surface exhibits the best spontaneity of SO2 desorption at either room temperature or high temperatures.  相似文献   

17.
Two-dimensional, three-dimensional, and four-dimensional quantum dynamic calculations are performed on the dissociative chemisorption of CH(4) on Ni(111) using the multiconfiguration time-dependent Hartree (MCTDH) method. The potential energy surface used for these calculations is 15-dimensional (15D) and was obtained with density functional theory for points which are concentrated in the region that is dynamically relevant to reaction. Many reduced dimensionality calculations were already performed on this system, but the molecule was generally treated as pseudodiatomic. The main improvement of our model is that we try to describe CH(4) as a polyatomic molecule by including a degree of freedom describing a bending vibration in our three-dimensional and four-dimensional models. Using a polyspherical coordinate system, a general expression for the 15D kinetic energy operator is derived, which discards all the singularities in the operator and includes rotational and Coriolis coupling. We use seven rigid constraints to fix the CH(3) umbrella of the molecule to its gas phase equilibrium geometry and to derive two-dimensional, three-dimensional, and four-dimensional Hamiltonians, which were used in the MCTDH method. Only four degrees of freedom evolve strongly along the 15D minimum energy path: the distance of the center of mass of the molecule to the surface, the dissociative C[Single Bond]H bond distance, the polar orientation of the molecule, and the bending angle between the dissociative C[Single Bond]H bond and the umbrella. A selection of these coordinates is included in each of our models. The polar rotation is found to be important in determining the mode selective behavior of the reaction. Furthermore, our calculations are in good agreement with the finding of Xiang et al. [J. Chem. Phys. 117, 7698 (2002)] in their reduced dimensional calculation that the helicopter motion of the umbrella symmetry axis is less efficient than its cartwheel motion for promoting the reaction. The effect of pre-exciting the bend modes is qualitatively incorrect at higher energies, suggesting the necessity of including additional rotational and vibrational degrees of freedom in the model.  相似文献   

18.
The variation in CO adsorption structures during the preoxidation of CO on Os-modified Pt(111) (Pt(111)/Os) was investigated using cyclic voltammetry and electrochemical scanning tunneling microscopy. The spontaneous deposition of Os on Pt(111) resulted in randomly scattered islands with a coverage range of 0.13-0.54. During preoxidation on Pt(111)/Os, a phase transition from (2 × 2)-α to (√19 × √19) via the transient structures of (2 × 2)-β and (1 × 1) took place as on unmodified Pt(111). As the amount of Os increased, however, the transient structures of (2 × 2)-β and (1 × 1) appeared at lower potentials with higher populations. When the population of the transient structures was greater than 50%, an oxidative CO stripping process took place to the structure of (√19 × √19), completing the preoxidation. These observations strongly support the idea that the presence of Os increases the mobility of adsorbed CO by electronic modification of the Pt(111) surface (electronic effect). In addition, the results obtained with Pt(111)/Os were compared with those of Pt(111)/Ru.  相似文献   

19.
李艳秋  刘淑萍  郝策  王泽新  邱介山 《化学学报》2009,67(23):2678-2684
应用原子与表面簇合物相互作用的五参数Morse势(5-MP)方法对氢原子在Ni(111)表面和次表面以及Ni(211), (533)台阶面进行了系统研究, 得到了氢原子在上述各面的吸附位、吸附几何、结合能和本征振动频率. 计算结果表明, 在Ni(111)面上, 氢原子优先吸附在三重位, 随着覆盖度的增加会吸附在次表面八面体位和四面体位. Ni(211), (533)的最优先吸附位都是四重位, 当氢原子的覆盖度增大时占据(111)平台的三重吸附位. 靠近台阶面的吸附位受台阶和平台高度的影响很大. 此外, 我们计算了氢原子在各表面的不同吸附位的扩散势垒, 获得氢原子在各表面的最低能量扩散通道.  相似文献   

20.
Hydrogen spillover, involving the surface migration of dissociated hydrogen atoms from active metal sites to the relatively inert catalyst support, plays a crucial role in hydrogen-involved catalytic processes. However, a comprehensive understanding of how H atoms are driven to spill over from active sites onto the catalyst support is still lacking. Here, we examine the atomic-scale perspective of the H spillover process on a Pt/Cu(111) single atom alloy surface using machine-learning accelerated molecular dynamics calculations based on density functional theory. Our results show that when an impinging H2 dissociates at an active Pt site, the Pt atom undergoes deactivation due to the dissociated hydrogen atoms that attach to it. Interestingly, collisions between H2 and sticking H atoms facilitate H spillover onto the host Cu, leading to the reactivation of the Pt atom and the realization of a continuous H spillover process. This work underscores the importance of the interaction between gas molecules and adsorbates as a driving force in elucidating chemical processes under a gaseous atmosphere, which has so far been underappreciated in thermodynamic studies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号