首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The process of decoherence of vibrational states of I2 in a dense helium environment is studied theoretically using the mixed quantum/classical method based on the Bohmian formulation of quantum mechanics [E. Gindensperger, C. Meier, and J. A. Beswick, J. Chem. Phys. 113, 9369 (2000)]. Specifically, the revival of vibrational wave packets is a quantum phenomena which depends sensitively on the coherence between the vibrational states excited by an ultrafast laser pulse. Its detection by a pump-probe setup as a function of rare gas pressure forms a very accurate way of detecting vibrational dephasing. Vibrational revivals of I2 in high pressure rare gas environments have been observed experimentally, and the very good agreement with the simulated spectra confirms that the method can accurately describe decoherence processes of quantum systems in interaction with an environment.  相似文献   

2.
Quantum-classical and quantum-stochastic molecular dynamics models (QCMD/QSMD) are formulated and applied to describe proton transfer processes in three model systems - the proton bound ammonia-ammonia dimer in an external electrostatic field; malonaldehyde, which undergoes a quantum tautomeric rearrangement; and phospholipase A2, an enzyme which induces a water dissociation process in its active site followed by proton hopping to a histidine imidazole ring. The proton dynamics are described by the time-dependent Schrödinger equation. The dynamics of the classical atoms are described using classical molecular dynamics. Coupling between the quantum proton (s) and the classical atoms is accomplished via conventional or extended Hellmann-Feynman forces, as well as the time-dependence of the potential energy function in the Schrödinger equation. The interaction of the system with its environment is described by stochastic forces. Possible extensions of the models as well as future applications in molecular structure and dynamics analysis will be briefly discussed.  相似文献   

3.
In this paper we report the results of extensive quantum chemical reaction pathway calculations for the electronic ground state of several different cluster models that mimic the proton chain transfer path within the green fluorescent protein (GFP). Our principal objective is to establish the robustness with respect to variations in the model of our recent mechanistic inferences for the ground state proton chain transfer [S. Wang and S. C. Smith, J. Phys. Chem. B, 2006, 110, 5084]. Additionally, comparison of our ground state results with the excited state proton transfer (ESPT) study by Vendrell et al. [O. Vendrell, R. Gelabert, M. Moreno and J. M. Lluch, J. Am. Chem. Soc., 2006, 128, 3564] leads to the conclusion that the mechanism of proton chain transfer may be expected to be analogous in ground and excited states, principally because in both cases the loss of the chromophore's phenolic proton contributes strongly to the reaction coordinate only late in the reaction path.  相似文献   

4.
Photoinduced intramolecular direct arylation allows structurally unique compounds containing phenanthro[9′,10′:4,5]imidazo[1,2‐f]phenanthridine and imidazo[1,2‐f]phenanthridine skeletons, which mediate excited‐state intramolecular proton transfer (ESIPT), to be efficiently synthesized. The developed polycyclic aromatics demonstrate that the combination of five‐membered ring structures with a rigid arrangement between a proton donor and a proton acceptor provides a means for attaining large fluorescence quantum yields, exceeding 0.5, even in protic solvents. Steady‐state and time‐resolved UV/Vis spectroscopy reveals that, upon photoexcitation, the prepared protic heteroaromatics undergo ESIPT, converting them efficiently into their excited‐state keto tautomers, which have lifetimes ranging from about 5 to 10 ns. The rigidity of their structures, which suppresses nonradiative decay pathways, is believed to be the underlying reason for the nanosecond lifetimes of these singlet excited states and the observed high fluorescence quantum yields. Hydrogen bonding with protic solvents does not interfere with the excited‐state dynamics and, as a result, there is no difference between the occurrences of ESIPT processes in MeOH versus cyclohexane. Acidic media has a more dramatic effect on suppressing ESIPT by protonating the proton acceptor. As a result, in the presence of an acid, a larger proportion of the fluorescence of ESIPT‐capable compounds originates from their enol excited states.  相似文献   

5.
Excitation of a molecule from the ground state to an electronically excited state can cause changes in its geometry, dipole moment, acidity or basicity, redox potentials and solvation. Bimolecular quenching of the excited state of the probe by other molecules present in the medium can be used to determine the mobilities of molecules and estimate microviscosities and encounter probabilities in the medium. Differences in excited state acidity or basicity relative to the ground state can be employed to investigate the dynamics of ultrafast proton transfer reactions. Three areas of current interest where fluorescent probes have served to elucidate important dynamic processes of molecules in simple self-aggregating surfactant systems such as aqueous micelles and reverse micelles are considered: (a) bimolecular quenching of excited states; (b) the dynamics of solvation of excited states and (c) ultrafast intermolecular excited state proton transfer (ESPT) reactions.  相似文献   

6.
Abstract— Proton transfer was theoretically examined as a possible primary process of vision. The motion of protons in the adiabatic potential of the Schiff base hydrogen bond was investigated in terms of quantum mechanics. The probability of proton transfer from the Schiff base nitrogen (i.e. the unprotonation of Schiff base) was found to increase as the retinal rotated around 11–12. double bond by 90°. The results also suggested that the proton transfer can take place before or during the transition from the excited to ground state (excited state proton transfer). We proposed that such excited state proton transfer is one of the elementary processes in primary visual photochemistry, and this process leads to the unprotonated visual pigment, hyposorhodopsin, which has been experimentally verified as one of the primary photoproducts of rhodopsin. The probability of this process could be comparable to the conventional process leading to the protonated intermediate, bathorhodopsin. The relation of these results with the recent experimental data is discussed.  相似文献   

7.
8.
The excited state intra-molecular proton transfer dynamics of 1-hydroxyanthraquinone in solution are investigated by femtosecond transient absorption spectroscopy and quantum chemistry calculations. Two characteristic bands of excited state absorption and stimu-lated emission are observed in transient absorption spectra with the excitation by the pump wavelength of 400 nm. From the delayed stimulated emission signal, the time scale of the intra-molecular proton transfer is determined to be about 32 fs. The quantum chemistry calculations show that the molecular orbits and the order of the S2 and S1 states are rever-sal and a conical intersection is demonstrated to exist along the proton transfer coordinate. After proton transfer, the second excited state of tautomer populated via the conical intersection undergoes the internal conversion with ~200 fs and the following intermolecular energy relaxation with ~16 ps. The longer component 300 ps can be explained in terms of the relaxation from excited-state tautomer to its ground state. From our observations, two proton transfer pathways via a conical intersection are proposed and the dominated one preserves the molecular orbits.  相似文献   

9.
In this paper, we present simulations of the decay of quantum coherence between vibrational states of I(2) in its ground (X) electronic state embedded in a cryogenic Kr matrix. We employ a numerical method based on the semiclassical limit of the quantum Liouville equation, which allows the simulation of the evolution and decay of quantum vibrational coherence using classical trajectories and ensemble averaging. The vibrational level-dependent interaction of the I(2)(X) oscillator with the rare-gas environment is modeled using a recently developed method for constructing state-dependent many-body potentials for quantum vibrations in a many-body classical environment [J. M. Riga, E. Fredj, and C. C. Martens, J. Chem. Phys. 122, 174107 (2005)]. The vibrational dephasing rates gamma(0n) for coherences prepared between the ground vibrational state mid R:0 and excited vibrational state mid R:n are calculated as a function of n and lattice temperature T. Excellent agreement with recent experiments performed by Karavitis et al. [Phys. Chem. Chem. Phys. 7, 791 (2005)] is obtained.  相似文献   

10.
Proton transfers are fundamental to chemical processes in solution and biological systems. Often, the well-known Grotthuss mechanism is assumed where a series of sequential "proton hops" initiates from the donor and combines to produce the net transfer of a positive charge over a long distance. Although direct experimental evidence for the sequential proton hopping has been obtained recently, alternative mechanisms may be possible in complex molecular systems. To understand these events, all accessible protonation states of the mediating groups should be considered. This is exemplified by transfers through water where the individual water molecules can exist in three protonation states (water, hydronium, and hydroxide); as a result, an alternative to the Grotthuss mechanism for a proton transfer through water is to generate a hydroxide by first protonating the acceptor and then transfer the hydroxide toward the donor through water. The latter mechanism can be most generally described as the transfer of a "proton hole" from the acceptor to the donor where the "hole" characterizes the deprotonated state of any mediating molecule. This pathway is distinct and is rarely considered in the discussion of proton-transfer processes. Using a calibrated quantum mechanical/molecular mechanical (QM/MM) model and an effective sampling technique, we study proton transfers in two solution systems and in Carbonic Anhydrase II. Although the relative weight of the "proton hole" and Grotthuss mechanisms in a specific system is difficult to determine precisely using any computational approach, the current study establishes an energetics motivated framework that hinges on the donor/acceptor pKa values and electrostatics due to the environment to argue that the "proton hole" transfer is likely as important as the classical Grotthuss mechanism for proton transport in many complex molecular systems.  相似文献   

11.
We propose a generalization of the intrinsic reaction coordinate (IRC) for quantum many-body systems described in terms of the mass-weighted ring polymer centroids in the imaginary-time path integral theory. This novel kind of reaction coordinate, which may be called the "centroid IRC," corresponds to the minimum free energy path connecting reactant and product states with a least amount of reversible work applied to the center of masses of the quantum nuclei, i.e., the centroids. We provide a numerical procedure to obtain the centroid IRC based on first principles by combining ab initio path integral simulation with the string method. This approach is applied to NH(3) molecule and N(2)H(5) (-) ion as well as their deuterated isotopomers to study the importance of nuclear quantum effects in the intramolecular and intermolecular proton transfer reactions. We find that, in the intramolecular proton transfer (inversion) of NH(3), the free energy barrier for the centroid variables decreases with an amount of about 20% compared to the classical one at the room temperature. In the intermolecular proton transfer of N(2)H(5) (-), the centroid IRC is largely deviated from the "classical" IRC, and the free energy barrier is reduced by the quantum effects even more drastically.  相似文献   

12.
Proton transfer and dissociation processes following excitation of the OH or NH stretching modes of the proton-bound complex GlyLysH(+) are studied by classical trajectories. "On the fly" simulations with the PM3 semiempirical electronic structure method for the potential surface are used. Initial conditions are sampled to correspond to the v=1 excited state of the OH or NH stretching modes. Five different conformers of the complex are studied as initial structures. The main findings are (1) Photoinduced proton transfer is on the picosecond time scale. (2) Proton transfer is much faster than the processes of dissociation. (3) Proton transfer involves different sites. Most trajectories show sequences of two proton transfer events. (4) The proton transfer events show high selectivity with regard to the initially excited vibration and the initial structure. (5) Photodissociation of the complex occurs on a typical time scale of 100 ps. (6) Conformational transitions are found to be often faster than proton transfer. These results have implications for the mass spectrometry of complexes, for dynamics of proton wires, and for proton migration in proteins.  相似文献   

13.
Proton tautomerism of 1,8-dihydroxy-3-methyl-anthraquinone and its analogues were studied using HF and CIS methods with 6-31g(d,p) basis set for the ground and singlet excited states. The calculations indicate that the compound exists two strong intramolecular hydrogen bonds (IHB), and shows similar characters in its proton transfer processes considering the geometries and Mulliken charge population. Calculation results further show that intramolecular proton transfer (IPT) is not favored in view of the energy trend for chryosphanol, which has two hydrogens of hydroxyl groups bond with a common oxygen of carbonyl group and exists two IHBs in the peri region. However, it exhibits normal intramolecular proton transfer for the derivatives of chryosphanol, which have only one pair of adjacent hydroxyl group and carbonyl group existing in the peri region. Hereby, it can be conjectured from a theoretical point of view that IPT is absent in the similar structure such as hypericin’s peri region. Calculation results on the photophysical process show that the isomerization process is competitive with the intersystem crossing process, which facilitates the increase of triplet state quantum efficiency and photosensitive activity.  相似文献   

14.
This paper presents a general theoretical formulation for proton-coupled electron transfer (PCET) reactions. The solute is represented by a multistate valence bond model, and the active electrons and transferring proton(s) are treated quantum mechanically. This formulation enables the classical or quantum mechanical treatment of the proton donor-acceptor vibrational mode, as well as the dynamical treatment of the proton donor-acceptor mode and the solvent. Nonadiabatic rate expressions are presented for PCET reactions in a number of well-defined limits for both dielectric continuum and molecular representations of the environment. The dynamical rate expressions account for correlations between the fluctuations of the proton donor-acceptor distance and the nonadiabatic PCET coupling. The quantities in the rate expressions can be calculated with a dielectric continuum model or a molecular dynamics simulation of the full system. The significance of the quantum and dynamical effects of the proton donor-acceptor mode is illustrated with applications to model PCET systems.  相似文献   

15.
During the last years, the use of photoinduced radical chain polymerization of unsatured monomers has increased considerably because of the vide applications of these processes in photoactive polymer-based systems. The present paper is mainly concerned with an investigation of the processes involved. For this purpose, time resolved laser spectroscopy (which appears to be a very convenient method for investigating directly the experimental behaviour of selectively excited chromophores) has been used. The utility of such a technique for the investigation of the primary processes which occur in the excited states of the photoinitiators immediately after the absorption of photons is demonstrated. As examples, main outlines corresponding to the classical processes observed in radical photoinitiated polymerization are considered and discussed: excited state processes in photoinitiators; mechanism of excitation transfer in combination of photosensitive systems; visible laser light induced polymerization; holographic recording.  相似文献   

16.
A new method for analyzing and visualizing the molecular excited states, named "excited state paired interacting orbital (EPIO)," is proposed. The method is based both on the paired interacting orbital (PIO) proposed by Fujimoto and Fukui [J. Chem. Phys. 60, 572 (1974)] and the natural transition orbital (NTO) by Martin [J. Chem. Phys. 118, 4775 (2003)]. Within the PIO method, orbital interactions between the two fragmented molecules are represented practically only by a few pairs of fragment orbitals. The NTO method is a means of finding a compact orbital representation for the electronic transitions in the excited states. With the method, electronic transitions are expressed by a few particle-hole orbital pairs and a clear picture on the electronic transitions is obtained. EPIO method is designed to have both properties of the preceding two methods: electronic transitions in composite molecular systems can be expressed with a few pairs of EPIOs which are constructed with fragmented molecular orbitals (MOs). Excited state characters, such as charge transfer and local excitations, are analyzed by using EPIOs with their generation probabilities. Thus, the present method gives us clear information on the composition of MOs which play an important role in the molecular excitation processes, e.g., optical processes.  相似文献   

17.
By computer simulation, using both quantum and classical dynamics, we determined the rate constant and the kinetic isotope effect of the rate-determining step in the neutral hydrolysis of p-methoxyphenyl dichloroacetate in aqueous solution. This step involves a proton transfer concerted with the formation of a C O bond. A method of biased sampling was used; the Gibbs free energy of the biased configuration from which proton transfer is likely to occur was determined by a combination of semiempirical quantum calculations and thermodynamic integration. The proton dynamics was modeled with the quantum-dynamical density matrix evolution method that includes nonadiabatic pathways. The proton dynamics is driven by a fluctuating proton potential that was derived from a classical molecular dynamics simulation of the system including solvent. The calculated rate constant of 3×10−2 s−1 agrees within the error of the calculation with the experimentally observed value of 2.78×10−3. The calculated pseudo-first-order kinetic isotope effect of 3.9 is in good agreement with the experimentally observed value of 3.2. The results show the feasibility of computational approaches to slow reactions in complex environments, where proton transfer with an essential quantum-dynamical nature is the rate-limiting step. ©1999 John Wiley & Sons, Inc. J Comput Chem 20: 886–895, 1999  相似文献   

18.
We investigate the dynamics and mechanism of the IR-driven cis-trans isomerization of nitrous acid (HONO) in a low-temperature krypton matrix applying ultrafast time resolved IR spectroscopy. After excitation of the OH-stretching mode the trans HONO state decays biexponentially on a 8 and 260 ps time scale. The initially excited cis HONO state decays on a 20 ps time scale. Cis HONO isomerizes with 10% quantum yield on a 20 ps time scale to trans HONO. The quantum yield we observe is significantly smaller than the previously reported 100%, which could imply that additional, much slower reaction channels exist. We furthermore developed a four-dimensional model of the system, which includes the three proton intramolecular degrees of freedom of HONO fully quantum mechanically and one intermolecular translational degree of freedom of the molecule in the crystal cage. We find that cis-trans isomerization necessarily is accompanied by a translation of the molecule as a whole in the crystal cage. The translational degree of freedom tunes the intramolecular proton states of HONO with respect to each other. When resonances occur, the proton states might couple and transfer population. We suggest a possible reaction pathway, where the cis OH-stretch excited state first couples to a high cis torsional mode, which then may transfer almost instantaneously to the trans side. The model qualitatively explains all experimental observations.  相似文献   

19.
Applications of deflation techniques to the study of excited states of quantum systems are analyzed. It is demonstrated how these methods allow us to transform the excited state problem of one Hamiltonian, into the ground state problem of an auxiliary one. As an example, potential application in the density functional treatment of excited states is discussed. The inclusion of approximations in this scheme, such as the solution of the proposed model within a finite basis set is discussed. An extension of the Hartree–Fock (HF) method to excited states is presented. This new treatment includes previous self consistent field extensions to excited states and provides us with a way to obtain the HF extension to excited states of any ground state method. These results make the excited states of a system accessible through all ground state theoretical techniques. © 2013 Wiley Periodicals, Inc.  相似文献   

20.
The electronic structure and excited states of the Na(3)F cluster are investigated using different approximate, but numerically efficient, computational schemes, such as a 2e hybrid quantum/classical pseudopotential model with full-configuration interaction or time-dependent density-functional theory. Various quantities such as geometries and transition energies are compared with results previously obtained by multireference configuration interaction calculations, taken as reference data. The potential energy surfaces of the lowest excited states are investigated and the finite-temperature absorption spectra are calculated. The good agreement with recent beam experiments [J.-M. L'Hermite, V. Blanchet, A. Le Padellec, B. Lamory, and P. Labastie, Eur. Phys. J. D 28, 361 (2004)] leads to the conclusion that the absorption spectrum observed experimentally corresponds to the lowest energy isomer which has a C(2v) planar rhombic geometry.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号