首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The rate constant for the reaction CH3O2 + NO2 → (products) has been measured directly by flash photolysis and kinetic spectroscopy. At room temperature and at total pressures between 53 and 580 Torr, k3 = (9.2 ± 0.4) × 108 liter/mole sec so that the rate of formation of the probable primary product peroxymethyl nitrate (CH3O2NO2) may be significant in urban atmospheres.  相似文献   

2.
The ultraviolet absorption spectrum of CF3CFClO2 and the kinetics of the self reactions of CF3CFCl and CF3CFClO2 radicals and the reactions of CF3CFClO2 with NO and NO2 have been studied in the gas phase at 295 K by pulse radiolysis/transient UV absorption spectroscopy. The UV absorption cross section of CF3CFCl radicals was measured to be (1.78 ± 0.22) × 10?18 cm2 molecule?1 at 220 nm. The UV spectrum of CF3CFClO2 radicals was quantified from 220 nm to 290 nm. The absorption cross section at 250 nm was determined to be (1.67 ± 0.21) × 10?18 cm2 molecule?1. The rate constants for the self reactions of CF3CFCl and CF3CFClO2 radicals were (2.6 ± 0.4) × 10?12 cm3 molecule?1 s?1 and (2.6 ± 0.5) × 10?12 cm3 molecule?1 s?1, respectively. The reactivity of CF3CFClO2 radicals towards NO and NO2 was determined to (1.5 ± 0.6) × 10?11 cm3 molecule?1 s?1 and (5.9 ± 0.5) × 10?12 cm3 molecule?1 s?1, respectively. Finally, the rate constant for the reaction of F atoms with CF3CFClH was determined to (8 ± 2) × 10?13 cm3 molecule?1 s?1. Results are discussed in the context of the atmospheric chemistry of HCFC-124, CF3CFClH. © 1994 John Wiley & Sons, Inc.  相似文献   

3.
《Chemical physics letters》1985,115(2):180-186
Rate coefficients for the reaction of CH3O with NO2 were measured over the temperature range 220–473 K and over the pressure range 0.6–4.0 Torr using a flow reactor apparatus with laser-induced fluorescence (LIF) detection of CH3O. The results were fitted to extract recombination and disproportionation rate constants. Combined with previous indirect studies at higher pressure, they suggest that the reaction proceeds not through a single complex but by separate paths, with disproportionation occurring by direct H-atom abstraction.  相似文献   

4.
Relative rate coefficients for the reaction of acetyl (CH3CO) radicals with O2 (k4) and Cl2 (k7) have been obtained at 298 K and 228 K as a function of total pressure, using FTIR/environmental chamber techniques. Measured values of k4/k7 were placed on an absolute basis using k7=2.8×10−11 exp(−47/T) cm3 molec−1 s−1. At 298 K, the value of k4 is constant ((7±2)×10−13 cm3 molec−1 s−1) at pressures from 0.1 to 2 torr, then increases to a high pressure limiting value of (3.2±0.6)×10−12 cm3 molec−1 s−1, which is approached at pressures above 300 torr. At 228 K, the low-pressure value of k4 increases by about 20–30%, while the high pressure value remains unchanged. Experiments designed to elucidate the products of reaction (4) as a function of pressure at 298 K indicate that the reaction occurs via a concerted mechanism in which CH3CO radicals combine with O2 to give an excited acetylperoxy radical (CH3COO2*) which is increasingly stabilized at high pressure at the expense of a low pressure decomposition channel. The yield of acetylperoxy radicals from reaction (4) decreases from >95% at pressures above 100 torr, to about 90% at 60 torr, and 50% at 6 torr. Indirect evidence for formation of OH radicals from the low pressure decomposition is presented, although the carbon-containing coproduct(s) of this channel could not be identified. © 1997 John Wiley & Sons, Inc. Int J Chem Kinet 29: 655–663, 1997.  相似文献   

5.
The branching ratio β = k(1b)/k(1a) for the formation of methyl nitrate, CH(3)ONO(2), in the gas-phase CH(3)O(2) + NO reaction, CH(3)O(2) + NO → CH(3)O + NO(2) (1a), CH(3)O(2) + NO → CH(3)ONO(2) (1b), has been determined over the pressure and temperature ranges 50-500 Torr and 223-300 K, respectively, using a turbulent flow reactor coupled with a chemical ionization mass spectrometer. At 298 K, the CH(3)ONO(2) yield has been found to increase linearly with pressure from 0.33 ± 0.16% at 50 Torr to 0.80 ± 0.54% at 500 Torr (errors are 2σ). Decrease of temperature from 300 to 220 K leads to an increase of β by a factor of about 3 in the 100-200 Torr range. These data correspond to a value of β ≈ 1.0 ± 0.7% over the pressure and temperature ranges of the whole troposphere. Atmospheric concentrations of CH(3)ONO(2) roughly estimated using results of this work are in reasonable agreement with those observed in polluted environments and significantly higher compared with measurements in upper troposphere and lower stratosphere.  相似文献   

6.
The reaction of nitrate radical with dimethyl sulfide was studied with cavity ring-down spectroscopy in 20-200 Torr of N2 diluent in the temperature range of 283-318 K. The rate constant for this reaction, k(1), is found to be temperature dependent and pressure independent: k1 = 4.5(-2.8)(+4.0) x 10(-13) exp[(310 +/- 220)/T] cm3 molecule(-1) s(-1). The uncertainties are two standard deviations from regression analyses. The present rate constants are in good agreement with those reported by Daykin and Wine (Int. J. Chem. Kinet. 1990, 22, 1083) and may be used in the atmospheric model calculation. Theoretical calculations were carried out to verify the existence of an intermediate complex.  相似文献   

7.
The rate constant for the reaction of CH3OCH2 radicals with O2 (reaction (1)) and the self reaction of CH3OCH2 radicals (reaction (5)) were measured using pulse radiolysis coupled with time resolved UV absorption spectroscopy. k1 was studied at 296K over the pressure range 0.025–1 bar and in the temperature range 296–473K at 18 bar total pressure. Reaction (1) is known to proceed through the following mechanism: CH3OCH2 + O2 ↔ CH3OCH2O2# → CH2OCH2O2H# → 2HCHO + OH (kprod) CH3OCH2 + O2 ↔ CH3OCH2O2# + M → CH3OCH2O2 + M (kRO2) k = kRO2 + kprod, where kRO2 is the rate constant for peroxy radical production and kprod is the rate constant for formaldehyde production. The k1 values obtained at 296K together with the available literature values for k1 determined at low pressures were fitted using a modified Lindemann mechanism and the following parameters were obtained: kRO2,0 = (9.4 ± 4.2) × 10−30 cm6 molecule−2 s−1, kRO2,∞ = (1.14 ± 0.04) × 10−11 cm3 molecule−1 s−1, and kprod,0 = (6.0 ± 0.5) × 10−12 cm3 molecule−1 s−1, where kRO2,0 and kRO2,∞ are the overall termolecular and bimolecular rate constants for formation of CH3OCH2O2 radicals and kprod,0 represents the bimolecular rate constant for the reaction of CH3OCH2 radicals with O2 to yield formaldehyde in the limit of low pressure. kRO2,∞ = (1.07 ± 0.08) × 10−11 exp(−(46 ± 27)/T) cm3 molecule−1 s−1 was determined at 18 bar total pressure over the temperature range 296–473K. At 1 bar total pressure and 296K, k5 = (4.1 ± 0.5) × 10−11 cm3 molecule−1 s−1 and at 18 bar total pressure over the temperature range 296–523K, k5 = (4.7 ± 0.6) × 10−11 cm3 molecule−1 s−1. As a part of this study the decay rate of CH3OCH2 radicals was used to study the thermal decomposition of CH3OCH2 radicals in the temperature range 573–666K at 18 bar total pressure. The observed decay rates of CH3OCH2 radicals were consistent with the literature value of k2 = 1.6 × 1013exp(−12800/T)s−1. The results are discussed in the context of dimethyl ether as an alternative diesel fuel. © 1997 John Wiley & Sons, Inc.  相似文献   

8.
The kinetics of the reaction of CH3O with NO and the branching ratio for HCHO product formation, obtained as ΓHCHO = (Rate of HCHO formation) / (Rate of CH3O decay), have been studied using a discharge flow reactor. Laser induced fluorescence has been used to monitor the decay of the CH3O radical and the build-up of the HCHO product. Overall rate constants and product branching ratios were measured at room temperature over the pressure range of 0.72–8.5 torr He. Three reaction mechanisms were considered which differed in the routes of HCHO formation: (i) direct disproportionation; (ii) via an energized collision complex; or (iii) both reaction routes. It has been shown that data on the pressure dependence of the overall rate constant are not sufficient to distinguish between these mechanisms. In addition, an accurate value of Γ is required. Analysis of the available experimental data provided 0.0 and about 0.1 as the lower and upper limit for Γ, respectively. Since the rate constants derived for CH3ONO formation were not sensitive to the value assumed for Γ, k = (1.69 ± 0.69) × 10?29 cm6 molecule?2 s?1 and k = (2.45 ± 0.31) × 10?11 cm3 molecule?1 s?1 could be derived. The rate constant obtained for formaldehyde formation when extrapolated to zero pressure is k = (3.15 ± 0.92) × 10?12 cm3 molecule?1 s?1. © 1994 John Wiley & Sons, Inc.  相似文献   

9.
Quasi-classical trajectory (QCT) calculations on a model potential energy surface (PES) show strong deviations from statistical Rice-Ramsperger-Kassel-Marcus (RRKM) rate theory for the decomposition reaction (1) CH3OONO* --> CH3O + NO2, where the highly excited CH3OONO* was formed by (2) CH3O2 + NO --> CH3OONO*. The model PES accurately describes the vibrational frequencies, structures, and thermochemistry of the cis- and trans-CH3OONO isomers; it includes cis-trans isomerization in addition to reactions 1 and 2 but does not include nitrate formation, which is too slow to affect the decay rate of CH3OONO*. The QCT results give a strongly time-dependent rate constant for decomposition and damped oscillations in the decomposition rate, not predicted by statistical rate theory. Anharmonicity is shown to play an important role in reducing the rate constant by a factor of 10 smaller than predicted using classical harmonic RRKM theory (microcanonical variational transition state theory). Master equation simulations of organic nitrate yields published previously by two groups assumed that RRKM theory is accurate for reactions 1 and 2 but required surprising parametrizations to fit experimental nitrate yield data. In the present work, it is hypothesized that the non-RRKM rate of reaction (1) and vibrational anharmonicity are at least partly responsible for the surprising parameters.  相似文献   

10.
The ultraviolet absorption spectra of the peroxy radicals derived from hydrochlorofluorocarbons 141b and 142b, (CFCl2CH2O2 and CF2ClCH2O2, respectively), and the kinetics of their self reactions have been studied in the gas phase at 298 K using a pulse radiolysis technique. Absorption cross sections were quantified over the wavelength range 220–300 nm. Measured absorption cross sections at 250 nm were indistinguishable within the experimental uncertainties (≈10%) and yield; Errors represent the sum of statistical uncertainty and our estimate of potential systematic errors. Our absorption cross section data were then used to derive the observed self reaction rate constants for reactions (1) and (2), defined as ?d[RO2]/dt = 2k[RO2]2 (R = CFCl2CH2 or CF2ClCH2), of k1obs = (4.36 ± 0.64) × 10?12 and k2obs = (4.13 ± 0.58) × 10?12 cm3 molecule?1 s?1, quoted errors represent 2σ. These results are discussed with respect to previous studies of the absorption spectra and kinetics of peroxy radicals.  相似文献   

11.
Alkyl nitrate yields from the reaction of 1-pentyl, 2-pentyl and 2-methyl-2-butyl peroxy radicals with NO have been determined over the temperature range (261-305 K) and at 1 bar pressure from the photo-oxidation of the iodoalkane precursors in air-NO mixtures. Yields were observed to increase with decreasing temperature and, contrary to previous observations, along the series primary < secondary congruent with tertiary. Our results suggests a significant temperature dependence for the formation of nitrates from the reaction of pentyl peroxy radicals with NO and represent an extension in the temperature range over which this reaction has been studied experimentally in the past.  相似文献   

12.
The important stationary points on the potential energy surface of the reaction CH(3)O(2) + NO have been investigated using ab initio and density functional theory techniques. The optimizations were carried out at the B3LYP/6-311++G(d,p) and MP2/6-311++G(d,p) levels of theory while the energetics have been refined using the G2MP2, G3//B3LYP, and CCSD(T) methodologies. The calculations allow the proper characterization of the transition state barriers that determine the fate of the nascent association conformeric minima of methyl peroxynitrite. The main products, CH(3)O + NO(2), are formed through either rearrangement of the trans-conformer to methyl nitrate and its subsequent dissociation or via the breaking of the peroxy bond of the cis-conformer to CH(3)O + NO(2) radical pair. The important consequences of the proposed mechanism are (a) the allowance on energetic grounds for nitrate formation parallel to radical propagation under favorable external conditions and (b) the confirmation of the conformational preference of the homolytic cleavage of the peroxy bond, discussed in previous literature.  相似文献   

13.
The molecular modulation spectroscopic technique was employed to study the kinetics of NO3 radicals produced in the 253.7 nm photolysis of flowing gas mixtures of HNO3/CH4/O2 at room temperature. By computer fitting of the NO3 temporal behavior, a rate coefficient of (2.3 ± 0.7) × 10?12 cm3 molecule?1 s?1 was obtained for the reaction between NO3 and CH3O2 at 298 K.  相似文献   

14.
The reaction of 1-methylvinoxy radicals, CH3COCH2, with molecular oxygen has been investigated by experimental and theoretical methods as a function of temperature (291-520 K) and pressure (0.042-10 bar He). Experiments have been performed by laser photolysis coupled to a detection of 1-methylvinoxy radicals by laser-induced fluorescence LIF. The potential energy surface calculations were performed using ab inito molecular orbital theory at the G3MP2B3 and CBSQB3 level of theory based on the density function theory optimized geometries. Derived molecular properties of the characteristic points of the potential energy surface were used to describe the mechanism and kinetics of the reaction under investigation. At 295 K, no pressure dependence of the rate constant for the association reaction has been observed: k(1,298K) = (1.18 +/- 0.04) x 10(-12) cm3 s(-1). Biexponential decays have been observed in the temperature range 459-520 K and have been interpreted as an equilibrium reaction. The temperature-dependent equilibrium constants have been extracted from these decays and a standard reaction enthalpy of deltaH(r,298K) = -105.0 +/- 2.0 kJ mol(-1) and entropy of deltaS(r,298K) = -143.0 +/- 4.0 J mol(-1) K(-1) were derived, in excellent agreement with the theoretical results. Consistent heats of formation for the vinoxy and the 1-methylvinoxy radical as well as their O2 adducts are recommended based on our complementary experimental and theoretical study deltaH(f,298K) = 13.0 +/- 2.0, -32. 9+/- 2.0, -85.9 +/- 4.0, and -142.1 +/- 4.0 kJ mol(-1) for CH2CHO, CH3COCH2 radicals, and their adducts, respectively.  相似文献   

15.
Pulse radiolysis was used to study the kinetics of the reactions of CH3C(O)CH2O2 radicals with NO and NO2 at 295 K. By monitoring the rate of formation and decay of NO2 using its absorption at 400 and 450 nm the rate constants k(CH3C(O)CH2O2+NO)=(8±2)×10−12 and k(CH3C(O)CH2O2+NO2)=(6.4±0.6)×10−12 cm3 molecule−1 s−1 were determined. Long path length Fourier transform infrared spectrometers were used to investigate the IR spectrum and thermal stability of the peroxynitrate, CH3C(O)CH2O2NO2. A value of k−6≈3 s−1 was determined for the rate of thermal decomposition of CH3C(O)CH2O2NO2 in 700 torr total pressure of O2 diluent at 295 K. When combined with lower temperature studies (250–275 K) a decomposition rate of k−6=1.9×1016 exp (−10830/T) s−1 is determined. Density functional theory was used to calculate the IR spectrum of CH3C(O)CH2O2NO2. Finally, the rate constants for reactions of the CH3C(O)CH2 radical with NO and NO2 were determined to be k(CH3C(O)CH2+NO)=(2.6±0.3)×10−11 and k(CH3C(O)CH2+NO2)=(1.6±0.4)×10−11 cm3 molecule−1 s−1. The results are discussed in the context of the atmospheric chemistry of acetone and the long range atmospheric transport of NOx. © John Wiley & Sons, Inc. Int J Chem Kinet: 30: 475–489, 1998  相似文献   

16.
A temperature and pressure kinetic study for the CH(3)O(2) + ClO reaction has been performed using the turbulent flow technique with a chemical ionisation mass spectrometry detection system. An Arrhenius expression was obtained for the overall rate coefficient of CH(3)O(2) + ClO reaction: k(10)(T) = (1.96(?0.24)(+0.28)) × 10(-11) exp[(-626 ± 35)/T] cm(3) molecule(-1) s(-1) where the uncertainty associated with the rate coefficient is given at the one standard deviation level. Over a range of pressure (100-200 Torr) and temperature (298-223 K) no pressure dependence is observed. The smaller rate coefficients measured at lower temperatures compared with both previous low temperature studies are believed to arise through the reduction of secondary chemistry and greater sensitivity in terms of reactant detection (hence much lower initial concentrations were employed). These new data reduce the effectiveness of ozone loss cycles involving reaction of CH(3)O(2) + ClO in the polar stratosphere by around a factor of 1.5 and restrict the importance of the reaction to the tropical and extra-tropical clean marine environments in the troposphere.  相似文献   

17.
A direct kinetics study of the temperature dependence of the CH2O branching channel for the CH3O2 + HO2 reaction has been performed using the turbulent flow technique with high‐pressure chemical ionization mass spectrometry for the detection of reactants and products. The temperature dependence of the CH2O‐producing channel rate constant was investigated between 298 and 218 K at a pressure of 100 Torr, and the data were fitted to the following Arrhenius expression: 1.6 × 10?15 × exp[(1730 ± 130)/T] cm3 molecule?1 s?1. Using the Arrhenius expression for the overall rate of the CH3O2 + HO2 reaction and this result, the 298 K branching ratio for the CH2O producing channel is measured to be 0.11, and the branching ratio is calculated to increase to a value of 0.31 at 218 K, the lowest temperature accessed in this study. The results are compared to the analogous CH3O2 + CH3O2 reaction and the potential atmospheric ramifications of significant CH2O production from the CH3O2 + HO2 reaction are discussed. © 2001 John Wiley & Sons, Inc. Int J Chem Kinet 33: 363–376, 2001  相似文献   

18.
Mixtures of Cl2, CH4, and O2 were flash photolyzed at room temperature and pressures of ∽60–760 Torr to produce CH3O2. The CH3O2 radicals decay by the second-order process with k6 = (3.7 ± 0.3) × 10?13 cm3/sec in good agreement with other studies. This value ignores any removal by secondary radicals produced as a result of reaction (6), and therefore the true value might be as much as 30% lower. The value is independent of total pressure or the presence of H2O vapor. With SO2 also present, the CH3O2 decay becomes pseudo first order at sufficiently high SO2 pressure which indicates the reaction The value of (8.2 ± 0.5) × 10?15 cm3/sec at about 1 atm total pressure (mostly CH4) was found for CH3O2 removal by SO2, in good agreement with another recent measurement. This value can be equated with k1, unless the products rapidly remove another CH3O2 radical, in which case k1 would be a factor of 2 smaller.  相似文献   

19.
The reaction of CF3 with NO2 was studied at 296 ± 2K using two different absolute techniques. Absolute rate constants of (1.6 ± 0.3) × 10−11 and (2.1 −0.3+07) × 10−11 cm3 molecule−1 s−1 were derived by IR fluorescence and UV absorption spectroscopy, respectively. The reaction proceeds via two reaction channels: CF3 + NO2 → CF2O + FNO, (70 ± 12)% and CF3 + NO2 → CF3O + NO, (30 ± 12)%. An upper limit of 11% for formation of other reaction products was determined. The overall rate constant was within the uncertainty independent of total pressure between 0.4 to 760 torr. © 1996 John Wiley & Sons, Inc.  相似文献   

20.
用密度泛函方法分别研究了单态和三态 CH3 O·2 NO CH3 O· NO2 气相反应 .结果表明 ,反应中 NO进攻 CH3 O·2 经过了一个顺反异构化的过程 ,摘取 CH3 O·2 的端基氧 .整个反应是吸热反应 ,理论计算吸热值为 5 0 .93k J/ mol,单态为多通道多步骤反应 ,决定速度步骤的能垒为 1 90 .6 1 k J/ mol.而三态为单通道反应 ,其决定速度步骤的能垒为 1 6 3.31 k J/ mol.三态反应为最佳反应通道 .该反应的研究将为保护臭氧层及大气环境提供重要的理论依据 .  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号