首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 687 毫秒
1.
The rate coefficient for the reaction of the peroxypropionyl radical (C2H5C(O)O2) with NO was measured with a laminar flow reactor over the temperature range 226–406 K. The C2H5C(O)O2 reactant was monitored with chemical ionization mass spectrometry. The measured rate coefficients are k(T) = (6.7 ± 1.7) × 10−12 exp{(340 ± 80)/T} cm3 molecule−1 s−1 and k(298 K) = (2.1 ± 0.2) × 10−11 cm3 molecule−1 s−1. Our results are comparable to recommended rate coefficients for the analogous CH3C(O)O2 + NO reaction. Heterogeneous effects, pressure dependence, and concentration gradients inside the flow reactor are examined. © 1999 John Wiley & Sons, Inc. Int J Chem Kinet: 31: 221–228, 1999  相似文献   

2.
A low‐pressure discharge‐flow system equipped with laser‐induced fluorescence (LIF) detection of NO2 and resonance‐fluorescence detection of OH has been employed to study the self reactions CH2ClO2 + CH2ClO2 → products (1) and CHCl2O2 + CHCl2O2 → products (2), at T = 298 K and P = 1–3 Torr. Possible secondary reactions involving alkoxy radicals are identified. We report the phenomenological rate constants (kobs) k1obs = (4.1 ± 0.2) × 10−12 cm3 molecule−1 s−1 k2obs = (8.6 ± 0.2) × 10−12 cm3 molecule−1 s−1 and the rate constants derived from modelling the decay profiles for both peroxy radical systems, which takes into account the proposed secondary chemistry involving alkoxy radicals k1 = (3.3 ± 0.7) × 10−12 cm3 molecule−1 s−1 k2 = (7.0 ± 1.8) × 10−12 cm3 molecule−1 s−1 A possible mechanism for these self reactions is proposed and QRRK calculations are performed for reactions (1), (2) and the self‐reaction of CH3O2, CH3O2 + CH3O2 → products (3). These calculations, although only semiquantitative, go some way to explaining why both k1 and k2 are a factor of ten larger than k3 and why, as suggested by the products of reaction (1) and (2), it seems that the favored reaction pathway is different from that followed by reaction (3). The atmospheric fate of the chlorinated peroxy species, and hence the impact of their precursors (CH3Cl and CH2Cl2), in the troposphere are briefly discussed. HC(O)Cl is identified as a potentially important reservoir species produced from the photooxidation of these precursors. © 1999 John Wiley & Sons, Inc. Int J Chem Kinet 31: 433–444, 1999  相似文献   

3.
Cavity ring‐down UV absorption spectroscopy was used to study the kinetics of the recombination reaction of FCO radicals and the reactions with O2 and NO in 4.0–15.5 Torr total pressure of N2 diluent at 295 K. k(FCO + FCO) is (1.8 ± 0.3) × 10−11 cm3 molecule−1 s−1. The pressure dependence of the reactions with O2 and NO in air at 295 K is described using a broadening factor of Fc = 0.6 and the following low (k0) and high (k) pressure limit rate constants: k0(FCO + O2) = (8.6 ± 0.4) × 10−31 cm6 molecule−1 s−1, k(FCO + O2) = (1.2 ± 0.2) × 10−12 cm3 molecule−1 s−1, k0(FCO + NO) = (2.4 ± 0.2) × 10−30 cm6 molecule−1 s−1, and k (FCO + NO) = (1.0 ± 0.2) × 10−12 cm3 molecule−1 s−1. The uncertainties are two standard deviations. © 2001 John Wiley & Sons, Inc. Int J Chem Kinet 33: 130–135, 2001  相似文献   

4.
The self‐reactions of the linear pentylperoxy (C5H11O2) and decylperoxy (C10H21O2) radicals have been studied at room temperature. The technique of excimer laser flash photolysis was used to generate pentylperoxy radicals, while conventional flash photolysis was used for decylperoxy radicals. For the former, the recombination rate coefficients were estimated for the primary 1‐pentylperoxy isomer (n‐C5H11O2) and for the secondary 2‐ and 3‐pentylperoxy isomers combined (“sec‐C5H11O2”) by creating primary and secondary radicals in different ratios of initial concentrations and simulating experimental decay traces using a simplified chemical mechanism. The values obtained at 298 K were: k(n‐C5H11O2+n‐C5H11O2→Products)=(3.9±0.9)×10−13 cm3 molecule−1 s−1; k(sec‐C5H11O2+sec‐C5H11O2→Products)=(3.3±1.2)×10−14 cm3 molecule−1 s−1. Quoted errors are 1σ, whereas the total relative combined uncertainties correspond to an estimated uncertainty factor around 1.65. For decylperoxy radicals, the kinetics of all the types of secondary peroxy isomers reacting with each other were considered equivalent and grouped as sec‐C10H21O2 (as for sec‐C5H11O2). The UV absorption spectrum of these secondary radicals was measured, and the combined self‐reaction rate coefficients then derived as: k(sec‐C10H21O2+sec‐C10H21O2)=(9.4±1.3)×10−14 cm3 molecule−1 s−1 at 298 K. Again, quoted errors are 1σ and the total uncertainty factor corresponds to a value around 1.75. The sec‐dodecylperoxy radical was also investigated using the same procedure, but only an estimate of the rate coefficient could be obtained, due to aerosol formation in the reaction cell: k(sec‐C12H25O2+sec‐C12H25O2)≡1.4×10−13 cm3 molecule−1 s−1, with an uncertainty factor of about 2. Despite the fairly high uncertainty factors, a relationship has been identified between the room‐temperature rate coefficient for the self‐reaction and the number of carbon atoms, n, in the linear secondary radical, suggesting: log(k(sec‐RO2+sec‐RO2)/cm3 molecule−1 s−1)=−13.0–3.2×exp(−0.64×(n‐2.3)). Concerning primary linear alkylperoxy radicals, no real trend in the self‐reaction rate coefficient can be identified, and an average value of 3.5×10−13 cm3 molecule−1 s−1 is proposed for all radicals. © 1999 John Wiley & Sons, Inc. Int J Chem Kinet: 31: 37–46, 1999  相似文献   

5.
The rate constants of the reactions of ethoxy (C2H5O), i‐propoxy (i‐C3H7O) and n‐propoxy (n‐C3H7O) radicals with O2 and NO have been measured as a function of temperature. Radicals have been generated by laser photolysis from the appropriate alkyl nitrite and have been detected by laser‐induced fluorescence. The following Arrhenius expressions have been determined: (R1) C2H5O + O2 → products k1 = (2.4 ± 0.9) × 10−14 exp(−2.7 ± 1.0 kJmol−1/RT) cm3 s−1 295K < T < 354K p = 100 Torr (R2) i‐C3H7O + O2 → products k2 = (1.6 ± 0.2) × 10−14 exp(−2.2 ± 0.2 kJmol−1/RT) cm3 s−1 288K < T < 364K p = 50–200 Torr (R3) n‐C3H7O + O2 → products k3 = (2.5 ± 0.5) × 10−14 exp(−2.0 ± 0.5 kJmol−1/RT) cm3 s−1 289K < T < 381K p = 30–100 Torr (R4) C2H5O + NO → products k4 = (2.0 ± 0.7) × 10−11 exp(0.6 ± 0.4 kJmol−1/RT) cm3 s−1 286K < T < 388K p = 30–500 Torr (R5) i‐C3H7O + NO → products k5 = (8.9 ± 0.2) × 10−12 exp(3.3 ± 0.5 kJmol−1/RT) cm3 s−1 286K < T < 389K p = 30–500 Torr (R6) n‐C3H7O + NO → products k6 = (1.2 ± 0.2) × 10−11 exp(2.9 ± 0.4 kJmol−1/RT) cm3s−1 289K < T < 380K p = 30–100 Torr All reactions have been found independent of total pressure between 30 and 500 Torr within the experimental error. © 1999 John Wiley & Sons, Inc. Int J Chem Kinet 31: 860–866, 1999  相似文献   

6.
The rate constant for the reaction of CH3OCH2 radicals with O2 (reaction (1)) and the self reaction of CH3OCH2 radicals (reaction (5)) were measured using pulse radiolysis coupled with time resolved UV absorption spectroscopy. k1 was studied at 296K over the pressure range 0.025–1 bar and in the temperature range 296–473K at 18 bar total pressure. Reaction (1) is known to proceed through the following mechanism: CH3OCH2 + O2 ↔ CH3OCH2O2# → CH2OCH2O2H# → 2HCHO + OH (kprod) CH3OCH2 + O2 ↔ CH3OCH2O2# + M → CH3OCH2O2 + M (kRO2) k = kRO2 + kprod, where kRO2 is the rate constant for peroxy radical production and kprod is the rate constant for formaldehyde production. The k1 values obtained at 296K together with the available literature values for k1 determined at low pressures were fitted using a modified Lindemann mechanism and the following parameters were obtained: kRO2,0 = (9.4 ± 4.2) × 10−30 cm6 molecule−2 s−1, kRO2,∞ = (1.14 ± 0.04) × 10−11 cm3 molecule−1 s−1, and kprod,0 = (6.0 ± 0.5) × 10−12 cm3 molecule−1 s−1, where kRO2,0 and kRO2,∞ are the overall termolecular and bimolecular rate constants for formation of CH3OCH2O2 radicals and kprod,0 represents the bimolecular rate constant for the reaction of CH3OCH2 radicals with O2 to yield formaldehyde in the limit of low pressure. kRO2,∞ = (1.07 ± 0.08) × 10−11 exp(−(46 ± 27)/T) cm3 molecule−1 s−1 was determined at 18 bar total pressure over the temperature range 296–473K. At 1 bar total pressure and 296K, k5 = (4.1 ± 0.5) × 10−11 cm3 molecule−1 s−1 and at 18 bar total pressure over the temperature range 296–523K, k5 = (4.7 ± 0.6) × 10−11 cm3 molecule−1 s−1. As a part of this study the decay rate of CH3OCH2 radicals was used to study the thermal decomposition of CH3OCH2 radicals in the temperature range 573–666K at 18 bar total pressure. The observed decay rates of CH3OCH2 radicals were consistent with the literature value of k2 = 1.6 × 1013exp(−12800/T)s−1. The results are discussed in the context of dimethyl ether as an alternative diesel fuel. © 1997 John Wiley & Sons, Inc.  相似文献   

7.
UV spectra of SF5 and SF5O2 radicals in the gas phase at 295 K have been quantified using a pulse radiolysis UV absorption technique. The absorption spectrum of SF5 was quantified from 220 to 240 nm. The absorption cross section at 220 nm was (5.5 ± 1.7) × 10−19 cm2. When SF5 was produced in the presence of O2 an equilibrium between SF5, O2, and SF5O2 was established. The rate constant for the reaction of SF5 radicals with O2 was (8 ± 2) × 10−13 cm3 molecule−1 s−1. The decomposition rate constant for SF5O2 was (1.0 ± 0.5) × 105 s−1, giving an equilibrium constant of Keq = [SF5O2]/[SF5][O2] = (8.0 ± 4.5) × 10−18 cm3 molecule−1. The SF5 O2 bond strength is (13.7 ± 2.0) kcal mol−1. The SF5O2 spectrum was broad with no fine structure and similar to the UV spectra of alkyl peroxy radicals. The absorption cross section at 230 nm was found to (3.7 ± 0.9) × 10−18 cm2. The rate constant of the reaction of SF5O2 with NO was measured to (1.1 ± 0.3) × 10−11 cm3 molecule−1 s−1 by monitoring the kinetics of NO2 formation at 400 nm. The rate constant for the reaction of F atoms with SF4 was measured by two relative methods to be (1.3 ± 0.3) × 10−11 cm3 molecule−1 s−1. © 1994 John Wiley & Sons, Inc.  相似文献   

8.
The kinetics of C2H5O2 and C2H5O2 radicals with NO have been studied at 298 K using the discharge flow technique coupled to laser induced fluorescence (LIF) and mass spectrometry analysis. The temporal profiles of C2H5O were monitored by LIF. The rate constant for C2H5O + NO → Products (2), measured in the presence of helium, has been found to be pressure dependent: k2 = (1.25±0.04) × 10?11, (1.66±0.06) × 10?11, (1.81±0.06) × 10?11 at P (He) = 0.55, 1 and 2 torr, respectively (units are cm3 molecule?1 s?1). The Lindemann-Hinshelwood analysis of these rate constant data and previous high pressure measurements indicates competition between association and disproportionation channels: C2H5O + NO + M → C2H5ONO + M (2a), C2H5O + NO → CH3CHO + HNO (2b). The following calculated average values were obtained for the low and high pressure limits of k2a and for k2b : k = (2.6±1.0) × 10?28 cm6 molecule?2 s?1, k = (3.1±0.8) × 10?11 cm3 molecule?1 s?1 and k2b ca. 8 × 10?12 cm3 molecule?1 s?1. The present value of k, obtained with He as the third body, is significantly lower than the value (2.0±1.0) × 10?27 cm6 molecule?2 s?1 recommended in air. The rate constant for the reaction C2H5O2 + NO → C2H5O + NO2 (3) has been measured at 1 torr of He from the simulation of experimental C2H5O profiles. The value obtained for k3 = (8.2±1.6) × 10?12 cm3 molecule?1 s?1 is in good agreement with previous studies using complementary methods. © 1995 John Wiley & Sons, Inc.  相似文献   

9.
Using Fourier transform infrared spectroscopy, the ethene yield from the reaction of C2H5 radicals with O2 has been determined to be 1.50 ± 0.09%, 0.85 ± 0.11%, and <0.1% at total pressures of 25, 50, and 700 torr, respectively. Additionally, the rate constant of the reaction of C2H5 radicals with molecular chlorine was measured relative to that with molecular oxygen. (1) A ratio k6/k7 = 1.99 ± 0.14 was measured at 700 torr total pressure which, together with the literature value of k7 = 4.4 × 10?12 cm3 molecule?1s?1, yields k6 = (8.8 ± 0.6) × 10?12 cm3 molecule?1s?1. Quoted errors represent 2σ. These results are discussed with respect to previous kinetic and mechanistic studies of C2H5 radicals.  相似文献   

10.
Cavity ring‐down (CRD) techniques were used to study the kinetics of the reaction of Br atoms with ozone in 1–205 Torr of either N2 or O2, diluent at 298 K. By monitoring the rate of formation of BrO radicals, a value of k(Br + O3) = (1.2 ± 0.1) × 10−12 cm3 molecule−1 s−1 was established that was independent of the nature and pressure of diluent gas. The rate of relaxation of vibrationally excited BrO radicals by collisions with N2 and O2 was measured; k(BrO(v) + O2 → BrO(v − 1) + O2) = (5.7 ± 0.3) × 10−13 and k(BrO(v) + N2 → BrO(v − 1) + N2) = (1.5 ± 0.2) × 10−13 cm3 molecule−1 s−1. The increased efficiency of O2 compared with N2 as a relaxing agent for vibrationally excited BrO radicals is ascribed to the formation of a transient BrO–O2 complex. © 2000 John Wiley & Sons, Inc. Int J Chem Kinet 32: 125–130, 2000  相似文献   

11.
The kinetics of the reactions CH3O + Cl → H2CO + HCl (1) and CH3O + ClO → H2CO + HOCl (2) have been studied using the discharge-flow techniques. CH3O was monitored by laser-induced fluorescence, whereas mass spectrometry was used for the detection or titration of other species. The rate constants obtained at 298 K are: k1 = (1.9 ± 0.4) × 10−11 cm3 molecule−1 s−1 and k2 = (2.3 ± 0.3) × 10−11 cm3 molecule−1 s−1. These data are useful to interpret the results of the studies of the reactions of CH3O2 with Cl and ClO which, at least partly, produce CH3O radicals. © 1996 John Wiley & Sons, Inc.  相似文献   

12.
The reaction of NO with the peroxy radical CFCl2CH2O2, and with CH3CFClO2 was investigated at 8(SINGLEBOND)20 torr and 263(SINGLEBOND)321 K by UV flash photolysis of CFCl2CH3/O2/NO gas mixtures. The kinetics were determined from observations of the growth rate of the CFCl2CH2O radical and the decay rate of NO by time-resolved mass spectrometry. The temperature dependence of the bimolecular rate coefficients, with their statistical uncertainties, can be expressed as (2.9 ± 0.7) e(435±96)/T × 10−12 cm3 molecule −1s−1, or (1.3 ± 0.2) (T/300)&minus(1.5±0.2) × 10−11 cm3 molecule−1 s−1 for NO + CFCl2CH2O2, and (3.3 ± 0.6)e(516±73)/T × 10−12 cm3 molecule−1 s−1, or (2.0 ± 0.3) (T/300)&minus(1.8±0.3) × 10−11 cm3 molecule−1 s−1 for NO + CH3CFClO2. No pressure dependence of the rate coefficients could be detected over the 8(SINGLEBOND)20 torr range investigated. © 1996 John Wiley & Sons, Inc.  相似文献   

13.
Using a relative rate method, rate constants for the gas-phase reactions of 2-methyl-3-buten-2-ol (MBO) with OH radicals, ozone, NO3 radicals, and Cl atoms have been investigated using FTIR. The measured values for MBO at 298±2 K and 740±5 torr total pressure are: kOH=(3.9±1.2)×10−11 cm3 molecule−1 s−1, kO3=(8.6±2.9)×10−18 cm3 molecule−1 s−1, k=(8.6±2.9)×10−15 cm3 molecule−1 s−1, and kCl=(4.7±1.0)×10−10 cm3 molecule−1 s−1. Atmospheric lifetimes have been estimated with respect to the reactions with OH, O3, NO3, and Cl. The atmospheric relevance of this compound as a precursor for acetone is, also, briefly discussed. © 1998 John Wiley & Sons, Inc. Int J Chem Kinet: 30: 589–594, 1998  相似文献   

14.
The deactivation of I(2P½) by R-OH compounds (R = H, CnH2n+1) was studied using time-resolved atomic absorption at 206.2 nm. The second-order quenching rate constants determined for H2O, CH3OH, C2H5OH, n-C3H7OH, i-C3H7OH, n-C4H9OH, i-C4H9OH, s-C4H9OH, t-C4H9OH, are respectively, 2.4 ± 0.3 × 10−12, 5.5 ± 0.8 × 10−12, 8 ± 1 × 10−12, 10 ± 1 × 10−12, 10 ± 1 × 10−12, 11.1 ± 0.9 × 10−12, 9.8 ± 0.9 × 10−12, 7.1 ± 0.7 × 10−12, and 4.1 ± 0.4× 10−12 cm3 molec−1 s−1 at room temperature. It is believed that a quasi-resonant electronic to vibrational energy transfer mechanism accounts for most of the features of the quenching process. The influence of the alkyl group and its role in the total quenching rate is also discussed. © 1997 John Wiley & Sons, Inc.  相似文献   

15.
The kinetics of the gas-phase reaction of Cl atoms with CF3I have been studied relative to the reaction of Cl atoms with CH4 over the temperature range 271–363 K. Using k(Cl + CH4) = 9.6 × 10?12 exp(?2680/RT) cm3 molecule?1 s?1, we derive k(Cl + CF3I) = 6.25 × 10?11 exp(?2970/RT) in which Ea has units of cal mol?1. CF3 radicals are produced from the reaction of Cl with CF3I in a yield which was indistinguishable from 100%. Other relative rate constant ratios measured at 296 K during these experiments were k(Cl + C2F5I)/k(Cl + CF3I) = 11.0 ± 0.6 and k(Cl + C2F5I)/k(Cl + C2H5Cl) = 0.49 ± 0.02. The reaction of CF3 radicals with Cl2 was studied relative to that with O2 at pressures from 4 to 700 torr of N2 diluent. By using the published absolute rate constants for k(CF3 + O2) at 1–10 torr to calibrate the pressure dependence of these relative rate constants, values of the low- and high-pressure limiting rate constants have been determined at 296 K using a Troe expression: k0(CF3 + O2) = (4.8 ± 1.2) × 10?29 cm6 molecule?2 s?1; k(CF3 + O2) = (3.95 ± 0.25) × 10?12 cm3 molecule?1 s?1; Fc = 0.46. The value of the rate constant k(CF3 + Cl2) was determined to be (3.5 ± 0.4) × 10?14 cm3 molecule?1 s?1 at 296 K. The reaction of Cl atoms with CF3I is a convenient way to prepare CF3 radicals for laboratory study. © 1995 John Wiley & Sons, Inc.  相似文献   

16.
Absolute (flash photolysis) and relative (FTIR-smog chamber and GC) rate techniques were used to study the gas-phase reactions of Cl atoms with C2H6 (k1), C3H8 (k3), and n-C4H10 (k2). At 297 ± 1 K the results from the two relative rate techniques can be combined to give k2/k1 = (3.76 ± 0.20) and k3/k1 = (2.42 ± 0.10). Experiments performed at 298–540 K give k2/k1 = (2.0 ± 0.1)exp((183 ± 20)/T). At 296 K the reaction of Cl atoms with C3H8 produces yields of 43 ± 3% 1-propyl and 57 ± 3% 2-propyl radicals, while the reaction of Cl atoms with n-C4H10 produces 29 ± 2% 1-butyl and 71 ± 2% 2-butyl radicals. At 298 K and 10–700 torr of N2 diluent, 1- and 2-butyl radicals were found to react with Cl2 with rate coefficients which are 3.1 ± 0.2 and 2.8 ± 0.1 times greater than the corresponding reactions with O2. A flash-photolysis technique was used to measure k1 = (5.75 ± 0.45) × 10−11 and k2 = (2.15 ± 0.15) × 10−10 cm3 molecule−1 s−1 at 298 K, giving a rate coefficient ratio k2/k1 = 3.74 ± 0.40, in excellent agreement with the relative rate studies. The present results are used to put other, relative rate measurements of the reactions of chlorine atoms with alkanes on an absolute basis. It is found that the rate of hydrogen abstraction from a methyl group is not influenced by neighboring groups. The results are used to refine empirical approaches to predicting the reactivity of Cl atoms towards hydrocarbons. Finally, relative rate methods were used to measure rate coefficients at 298 K for the reaction of Cl atoms with 1- and 2-chloropropane and 1- and 2-chlorobutane of (4.8 ± 0.3) × 10−11, (2.0 ± 0.1) × 10−10, (1.1 ± 0.2) × 10−10, and (7.0 ± 0.8) × 10−11 cm3 molecule−1 s−1, respectively. © 1997 John Wiley & Sons, Inc. Int J Chem Kinet 29: 43–55, 1997.  相似文献   

17.
Pulse radiolysis was used to study the kinetics of the reactions of CH3C(O)CH2O2 radicals with NO and NO2 at 295 K. By monitoring the rate of formation and decay of NO2 using its absorption at 400 and 450 nm the rate constants k(CH3C(O)CH2O2+NO)=(8±2)×10−12 and k(CH3C(O)CH2O2+NO2)=(6.4±0.6)×10−12 cm3 molecule−1 s−1 were determined. Long path length Fourier transform infrared spectrometers were used to investigate the IR spectrum and thermal stability of the peroxynitrate, CH3C(O)CH2O2NO2. A value of k−6≈3 s−1 was determined for the rate of thermal decomposition of CH3C(O)CH2O2NO2 in 700 torr total pressure of O2 diluent at 295 K. When combined with lower temperature studies (250–275 K) a decomposition rate of k−6=1.9×1016 exp (−10830/T) s−1 is determined. Density functional theory was used to calculate the IR spectrum of CH3C(O)CH2O2NO2. Finally, the rate constants for reactions of the CH3C(O)CH2 radical with NO and NO2 were determined to be k(CH3C(O)CH2+NO)=(2.6±0.3)×10−11 and k(CH3C(O)CH2+NO2)=(1.6±0.4)×10−11 cm3 molecule−1 s−1. The results are discussed in the context of the atmospheric chemistry of acetone and the long range atmospheric transport of NOx. © John Wiley & Sons, Inc. Int J Chem Kinet: 30: 475–489, 1998  相似文献   

18.
The kinetics of reactions of the tertiary β‐brominated peroxy radical BrC(CH3)2C(CH3)2O2 (2‐bromo‐1,1,2‐trimethylpropylperoxy) have been studied using the laser flash photolysis technique, photolysing HBr at 248 nm in the presence of O2 and 2,3‐dimethylbut‐2‐ene. At room temperature, a rate constant of (2.0 ± 0.8) × 10−14 cm3 molecule−1 s−1 was determined for the BrC(CH3)2C(CH3)2O2 self‐reaction. The reaction of BrC(CH3)2C(CH3)2O2 with HO2 was investigated in the temperature range 306–393 K, yielding the following Arrhenius expression: k(BrC(CH3)2C(CH3)2O2 + HO2) = (2.04 ± 0.25) × 10−12 exp[(501 ± 36)K/T] cm3 molecule−1 s−1, giving by extrapolation (1.10 ± 0.13) × 10−11 cm3 molecule−1 s−1 at 298 K. These results confirm the enhancement of the peroxy radical self‐reaction reactivity upon β‐substitution, which is similar for Br and OH substituents. In contrast, no significant effect of substituent has been observed on the rate constant for the reactions of peroxy radicals with HO2. The global uncertainty factors on rate constants are equal to nearly 2 for the self‐reaction and to 1.35 for the reaction with HO2. © 2000 John Wiley & Sons, Inc. Int J Chem Kinet 33: 41–48, 2001  相似文献   

19.
Kinetics for reactions of phenoxy radical, C6H5O, with itself and with O3 were examined at 298 K and low pressure (1 Torr) using discharge flow coupled with mass spectrometry (DF/MS). The rate constant for the phenoxy radical self‐reaction was determined to be k1 = (1.49 ± 0.53) × 10−11 cm3 molecule−1 s−1 defined by d[C6H5O]/dt=−2 k1[C6H5O]2. The rate constant for the C6H5O reaction with O3 was measured to be k2 = (2.86 ± 0.35) × 10−13 cm3 molecule−1 s−1, which may be a lower limit value. Because of much higher atmospheric abundance of ozone than that of both NO and phenoxy, the reaction of C6H5O with ozone may represent the principal fate of the phenoxy radical in the atmosphere. Products from reaction of C6H5O + C6H5O, NO, and NO2 were also investigated, and (C6H5O)2 (m/e = 186), C6H5O(NO) (m/e = 123), and C6H5O(NO2) (m/e = 139) adducts were observed as products for the reactions of C6H5O with itself, NO, and NO2, respectively. © 1999 John Wiley & Sons, Inc. Int J Chem Kinet 31: 65–72, 1999  相似文献   

20.
By conducting an excimer laser photolysis (193 and 248 nm) behind shock waves, three elementary reactions important in the oxidation of H2S have been examined, where, H, O, and S atoms have been monitored by the atomic resonance absorption spectrometry. For HS + O2 → products (1), the rate constants evaluated by numerical simulations are summarized as: k1 = 3.1 × 10−11exp|-75 kJ mol−1/RT| cm3molecule−1s−1 (T = 1400-1850 K) with an uncertainty factor of about 2. Direct measurements of the rate constants for S + O2 → SO + O (2), and SO + O2 → SO2 + O (3) yield k2 = (2.5 ± 0.6) × 10−11 exp|-(15.3 ± 2.5) kJ mol−1/RT| cm3molecule−1s−1 (T = 980-1610 K) and, k3 = (1.7 ± 0.9) × 10−12 exp|-(34 ± 11) kJ mol−1/RT| cm3molecule−1s−1 (T = 1130-1640 K), respectively. By summarizing these data together with the recent experimental results on the H(SINGLE BOND)S(SINGLE BOND)O reaction systems, a new kinetic model for the H2S oxidation process is constructed. It is found that this simple reaction scheme is consistent with the experimental result on the induction time of SO2 formation obtained by Bradley and Dobson. © 1997 John Wiley & Sons, Inc. Int J Chem Kinet 29: 57–66, 1997.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号