首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The role of molecular structure, charge, and hydrophobicity in polyelectrolyte layer-by-layer assembly (LbL) of thin films has been studied using the model polypeptides poly-L-glutamatic acid (PLGA) and poly-L-lysine (PLL), quartz crystal microbalance (QCM), and circular dichroism spectroscopy (CD). The adsorption behavior of PLGA and PLL has been compared with the structure of these molecules in aqueous solution under the same conditions. The data show that the deposition of polypeptide per adsorption step scales with average secondary structure content, whether alpha helix or beta sheet. This is contrary to the expectation based on the view that hydrogen bonds are crucial to polypeptide film assembly, because secondary structure formation in a polypeptide reduces its intermolecular hydrogen-bonding potential. The data also show that polypeptide adsorption scales with ionic strength and chain length. Taken together, the results increase knowledge of polypeptide-based LbL thin film fabrication and will help to provide a firmer foundation for the use of natural or designed polypeptides in LbL.  相似文献   

2.
The process of film formation on a solid substrate from polymer colloid dispersion during solvent evaporation has been investigated by means of the Monte Carlo simulation method. Colloid particles are modeled as hard spheres. Time evolution of the colloid density distribution and coverage of the solid substrate are studied. Both density and structure of colloid film is shown to depend strongly on the evaporation rate. At a low evaporation rate, the coexistence of hexagonal and tetragonal domains of dried colloid monolayer has been observed. The results of monolayer structure are in good agreement with the confocal scanning laser microscopy observations of Dullens et al. (2004).  相似文献   

3.
4.
Recent experimental results were reviewed. The 1D- and 2D-USAXS studies gave higher orders of Bragg diffraction for single crystals of colloidal silica particles, allowing more accurate determinations of the lattice constant, lattice symmetry, and direction. The closest interparticle spacing thus determined was confirmed to be smaller than the average spacing. The most closely packed planes ((110) planes for bcc) of negatively charged particles were found to be parallel to the likewise negatively charged capillary surface, inconsistently with the accepted double layer interaction theory but consistently with a recent experimental finding of positive adsorption. Shaking caused disruption of the single crystals but newly formed microcrystals retained the lattice constant and the preference of the (110) planes. The liquid-solid-liquid transition, a re-entrant phase transition, was found for silica particles and latex particles at given particle volume fraction and salt concentration, when the charge density of particles was varied. It was demonstrated that the purely repulsive Yukawa potential and the concept of renormalized charge cannot account for the re-entrant behavior. The Monte-Carlo simulation using the Sogami potential, which contains short-range repulsion and long-range attraction, was found to account for the fcc–bcc transition, which was earlier claimed to be explainable only by the Yukawa potential. Furthermore, the homogeneous-inhomogeneous phase transition and void formation could be accounted for by the simulation using the Sogami potential; the Yukawa potential could not reproduce the experiments. Attention was drawn to the experimental conditions in direct measurements of interparticle forces; only short interparticle distance and low charge density particles were covered, which make it practically impossible to detect the long-range counterion-mediated attraction. It is hoped that, by technical improvements, these shortcomings may be made up and quantitative argument become possible on the attraction.  相似文献   

5.
We consider the interaction of colloidal spheres in the presence of mono-, di-, and trivalent ions. The colloids are stabilized by electrostatic repulsion due to surface charges. The repulsive part of the interaction potential Ψ(d) is deduced from precise measurements of the rate of slow coagulation. These "microsurface potential measurements" allow us to determine a weak repulsion in which Ψ(d) is of the order of a few k(B)T. These data are compared to ζ potential measured under similar conditions. At higher concentrations both di- and trivalent counterions accumulate at the very proximity of the particle surface leading to charge reversal. The salt concentration c(cr) at which charge reversal occurs is found to be always above the critical coagulation concentration c(ccc). The analysis of Ψ(d) and of the ζ potential demonstrates, however, that adsorption of multivalent counterions starts far below c(cr). Hence, colloid stability in the presence of di- and trivalent ions cannot be described in terms of a DLVO ansatz assuming a surface charge that is constant with regard to the ionic strength.  相似文献   

6.
Cadmium selenide quantum dot (CdSe QD) has been used as a dopant in ferroelectric liquid crystal (FLC) 2-methylbutyl 4-(4-decyloxybenzylideneamino) cinnamate (DOBAMBC). Effect of CdSe QD in DOBAMBC on its different electro-optical (E-O) properties has been studied in the SmC* phase. The optical micrographs recorded for the pure and composite material are showing good dispersion of QDs in the FLC matrix. Micrographs of unaligned sample cell revealed that CdSe QDs induce homeotropic alignment of FLC molecules. An appreciable change in the value of E-O parameters like tilt angle, spontaneous polarisation and response time with shifting of SmA–SmC* phase transition temperature has been observed for CdSe QD–DOBAMBC composite. The observed properties of composite system have been discussed on the basis of surface properties of QDs in FLC system.  相似文献   

7.
8.
Surface-enhanced Raman scattering (SERS) spectra of the biologically important 2-aminobenzothiazole (2-ABT) molecule adsorbed on silver hydrosols are compared with its FTIR spectrum and normal Raman spectroscopy (NRS) spectrum in the bulk and in solution. The optimized structural parameters and the computed vibrational wavenumbers of the compound have been estimated from ab initio (Hatree-Fock) and density functional calculations. Some vibrational modes of the molecule have been reassigned. Concentration-dependent SERS spectra of the molecule reveal the existence of two types of vertically adsorbed species on colloidal silver particles, whose relative population varies with the adsorbate concentrations. The adsorption geometry and structural parameters of one type of adsorbed species are related to the NRS spectrum of the chemically prepared and theoretically modeled 2-ABT-Ag(I) coordination compound.  相似文献   

9.
A decrease in the resistance of colloidal Au multilayer films was observed upon heating. These multilayer Au films were fabricated by a layer-by-layer approach, using Au colloids and a bifunctional linker molecule, 1,6 hexanedithiol (HD) on polymer substrates. The resistance of the film prior to heating was 1 MOmega. The films were heated at three different temperatures, 120, 160, and 180 degrees C. After heating for 12 h, the resistance decreased by 6 orders of magnitude to about 50 Omega. This decrease in resistance was faster at higher temperatures. X-ray photoelectron spectroscopy (XPS) of the unheated films revealed two S 2p peaks corresponding to the Au-S thiolate peak and an oxidized S peak. Upon heating, the relative intensity of the oxidized S peak increased and that of the Au-S peak decreased, indicating an oxidation and desorption of the linker molecules. Scanning electron microscope (SEM) images of the heated films depict coalescence of the spherical Au particles into irregular shapes. The resistance decrease is believed to be due to the desorption of the linker molecule and subsequent coalescence of the Au particles. This method paves a way for controlling the resistance of electrodes on flexible polymer substrates.  相似文献   

10.
Crack formation and the evolution of stress in drying films of colloidal particles were studied using optical microscopy and a modified cantilever deflection technique, respectively. Drying experiments were performed using polystyrene particles with diameters of 47 ± 10 nm, 100 ± 16 nm, and 274 ± 44 nm that were suspended in water. As the films dried, cracks with a well-defined spacing were observed to form. The crack spacing was found to be independent of the particle size used, but to increase with the film thickness. The characteristic crack spacing was found to vary between 20 and 300 μm for films with thickness values in the range 3-70 μm. Cantilever deflection measurements revealed that the stresses that develop in the film increase with decreasing film thickness (increasing surface-to-volume ratio). The latter observation was interpreted in terms of the effects of a substrate constraint which causes the build up of stresses in the films. This interpretation was confirmed by crack formation experiments that were performed on liquid mercury surfaces in which removal of the substrate constraint prevented crack formation. Experiments were also performed on compliant elastomer surfaces in which the level of constraint was varied by changing the substrate modulus. The cracking length scale was found to increase with decreasing substrate modulus. A simple theory was also developed to describe the substrate modulus dependence of the cracking length scale. These combined experiments and theory provide convincing evidence that substrate constraints are an important factor in driving crack formation in thin colloidal films.  相似文献   

11.
We present a density functional theory study of interactions between spherical colloidal particles in amphiphile solutions. Theory is found to be in good agreement with previously published molecular dynamics simulations. It is used to analyze the effect of the amphiphile solution bulk density, the chain length, and the solvent mole fraction on the potential of mean force between the particles. The general features of the potential of mean force are rationalized in terms of formation of layers and bilayers of amphiphilic molecules in the intercolloidal gap. Theory yields the same general trends as observed in simulations and in experiments. In particular, the computed mean force changes its character from repulsive to attractive and back to repulsive as the solvent mole fraction is gradually increased.  相似文献   

12.
We present a density functional theory study of colloidal interactions in a concentrated polymer solution. The colloids are modeled as hard spheres and polymers are modeled as freely jointed tangent hard sphere chains. Our theoretical results for the polymer-mediated mean force between two dilute colloids are compared with recent simulation data for this model. Theory is shown to be in good agreement with simulation. We compute the colloid-colloid potential of mean force and the second virial coefficient, and analyze the behavior of these quantities as a function of the polymer solution density, the polymer chain length, and the colloid/polymer bead size ratio.  相似文献   

13.
We study the capillary forces arising from charged colloidal particles trapped at an oil-water interface. Since it is quadratic in the electric field, the electric stress acting on the interface cannot be written as the superposition of one-particle terms. Indeed, we find that the interfacial pressure is dominated by two-particle terms, which induce capillary forces involving one, two, three, or four particles. The dominant interaction is attractive and varies with the inverse cube of the particle distance.  相似文献   

14.
We consider a nonspherical colloidal particle immersed in a fluid close to its critical point. The temperature dependence of the corresponding order parameter profile is calculated explicitly. We perform a systematic expansion of the order parameter profile in powers of the local curvatures of the surface of the colloidal particle. This curvature expansion reduces to the short distance expansion of the order parameter profile in the case that the solvent is at the critical composition.  相似文献   

15.
Small-angle neutron scattering was used to investigate the interactions in concentrated colloidal dispersions containing silica or polystyrene latex with adsorbed polyethyleneoxide (PEO). In these dispersions of charged particles, both electrostatic and steric repulsions are present. The PEO layer was made invisible to neutrons through contrast matching. The effect of the interparticle repulsion was clearly shown in the scattering spectra by the appearance of a peak at low Q. The effective potentials can be well described by the Hayter-Penfold/Yukawa (HPY) potential. In the silica dispersions studied, the layer thickness is small, hence the electrostatic potential dominates and the potential has a lower concentration dependence. In the dispersions of polystyrene latex, the adsorbed layer is thicker; consequently, the electrostatic potential dominates at low volume fraction (the potential has a lower concentration dependence), and the steric potential dominates at higher volume fraction (the potential has a higher concentration dependence). This study also suggests that when more than one potential is present the stronger one has a dominant influence in determining the structure factor. This finding makes it possible to describe the multicomponential interactions by a single function.  相似文献   

16.
This work shows that mesoporous polymeric films with spherical and elliptical pores can be obtained by in situ structure inversion of the azo polymer colloid arrays through selective interaction with solvent. The epoxy-based azo polymer contained both the pseudo-stilbene-type azo chromophores and the hydrophilic carboxyl groups. The colloidal spheres of the azo polymer were prepared by gradual hydrophobic aggregation of the polymeric chains in THF-H2O media, induced by a steady increase in the water content. Ordered 2D arrays of the hexagonally close-packed colloidal spheres were obtained by the vertical deposition method. After the solvent (THF) annealing, the ordered 2D arrays were directly transformed to mesoporous films through the sphere-pore inversion. Under the same condition, the 2D arrays composed of the ellipsoidal colloids, which were obtained by the irradiation of a polarized Ar+ laser beam on the colloidal sphere arrays, could be transformed to films with ordered elliptical pores. To our knowledge, this is the first example to demonstrate that mesoporous structures can be directly formed from the colloidal arrays of a homopolymer through structure inversion. This observation can shed new light on the nature of self-assembly processes and provide a feasible approach to fabricate mesoporous structures without the infiltration-removal step. By exploring the photoresponsive properties of the materials, mesoporous film with special pore structure and properties can be expected.  相似文献   

17.
Colloidal clusters have received considerable attention in recent years in the context of the fabrication of “colloidal molecules”, mimicking the symmetry of molecular structures, as well as for the self-assembly of finite supracolloidal structures, especially from anisotropic colloidal particles. Here we review recent studies on clusters of anisotropic colloidal particles, highlighting certain classes of supracolloidal structures that have emerged as recurrent themes in these studies. We emphasize the interplay of colloidal interactions, often arising from the presence of one or more anisotropy attributes, which drives the self-assembly into finite supracolloidal structures.  相似文献   

18.
This paper reviews recent advances in the field of plasmonic films fabricated by colloidal lithography. Compared with conventional lithography techniques such as electron beam lithography and focused ion beam lithography, the unconventional colloidal lithography technique with advantages of low-cost and high-throughput has made the fabrication process more efficient, and moreover brought out novel films that show remarkable surface plasmon features. These plasmonic films include those with nanohole arrays, nanovoid arrays and nanoshell arrays with precisely controlled shapes, sizes, and spacing. Based on these novel nanostructures, optical and sensing performances can be greatly enhanced. The introduction of colloidal lithography provides not only efficient fabrication processes but also plasmonic films with unique nanostructures, which are difficult to be fabricated by conventional lithography techniques.  相似文献   

19.
We consider anisotropic colloidal particles with dumbbell or lens shapes that are immersed in a critical binary fluid mixture. The orientation-dependent long-ranged universal interactions mediated by the critical solvent between a particle and a wall or between two particles are investigated for mesoscopic particle sizes small compared to the correlation length and interparticle distances. Exact results are obtained using a "small particle operator expansion." The amplitudes of the isotropic and anisotropic operators in the expansion depend on the size and aspect ratio of the dumbbell or lens and are determined by density profiles in the Ising model at the critical point in a wedge geometry with symmetry-breaking fixed-spin boundary conditions. Dumbbells and ellipsoids with a symmetry preserving surface are also considered.  相似文献   

20.
We use x-ray photon correlation spectroscopy (XPCS) to probe the dynamics of colloidal particles in polycrystalline ice. During freezing, the dendritic ice morphology and rejection of particles from the ice created regions of high particle density, where some of the colloids were forced into contact and formed disordered aggregates. The particles in these high density regions underwent ballistic motion, with a characteristic velocity that increased with temperature. This ballistic motion is coupled with both stretched and compressed exponential decays of the intensity autocorrelation function. We suggest that this behavior could result from ice grain boundary migration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号