首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
《中国化学快报》2021,32(12):3653-3664
Carbon dots (CDs), as a new member of carbon nanostructures, have been widely applied in extensive fields due to their exceptional physicochemical properties. While, the emissions of most reported CDs are located in the blue to green range under the excitation of ultraviolet or blue light, which severely limits their practical applications, especially in photovoltaic and biological fields. Studies that focused on synthesizing CDs with long-wavelength (red to near-infrared) emission/excitation features (simply named L-w CDs) and exploring their potential applications have been frequently reported in recent years. In this review, we analyzed the key influence factors for the synthesis of CDs with long wavelength and multicolor (containing long wavelength) emissive properties, discussed possible fluorescence mechanism, and summarized their applications in sensing and cancer theranostics. Finally, the existing challenges and potential opportunities of L-w CDs are presented.  相似文献   

2.
Carbon dots (CDs) have excellent optical properties, low toxicity and easy preparation, which have led to them being widely used in biomedicine, sensing and optical devices. However, although great progress has been made in the preparation of CDs, the detailed exploration of their photoluminescence (PL) mechanism is still under debate due to their complex structures and surface functionalities. Here, we proposed a single change in the pH of the synthesis condition, which had no effect on the CDs intrinsic core states and avoided the mutual influence of multiple PL origins. The m-phenylenediamine (m–PD) served as a carbon source, whose protonation degree determined the surface state of the resulting CDs and the accompanying fluorescence characteristics. The as-obtained CDs materials can be applied in the chemical sensor and anti-counterfeiting fields in a targeted manner. Therefore, our work not only contributes to the explanation of the CDs PL mechanism, but also obtains a series of CDs materials with controllable PL properties.  相似文献   

3.
Cyclodextrins(CDs) have been used in many fields due to their inclusion properties. The formation of complex can improve physical and chemical properties of many drugs. The interesting of investigation on inclusion complex of vitamins with CDs is increasing. Some studies about vitamin-CD complex have been reported. In the paper, we review these studies citing 25 literatures.  相似文献   

4.
纳米碳点是碳纳米材料家族的新成员,近年来在国内外受到广泛关注。与传统的荧光染料和半导体量子点发光材料相比,碳点不仅具有优异的光学性能及尺寸效应,且具有制备成本低廉、生物相容性好、易于官能化、能带结构可调等优势。本文在理清有关碳点概念的基础之上,介绍了碳点结构特征和制备策略,着重综述了纳米碳点在生物成像与诊疗、传感器件、催化、光电器件和能量存储领域的最新研究进展,探讨了碳点研究目前存在的问题及未来的发展方向。  相似文献   

5.
《中国化学快报》2021,32(10):2994-3006
Nanozymes are nanomaterials with enzyme-like activities that efficiently overcome the drawbacks of natural enzymes in biosensing, detection, and biomedical fields, and they are the most widely used artificial enzymes. Owing to their excellent catalytic characteristics, biocompatibility, and environmental favorability, carbon-dots-based (CDs) nanozymes have inspired a research upsurge. However, no review focusing on CDs nanozymes has been published, even though substantial advances have been achieved. Herein, the advances, catalytic activities, and applications of CDs nanozymes are highlighted and summarized. In addition, the critical issues and challenges of researching nanozymes are discussed. We hope that this review will broaden the horizons of nanozymes and CDs nanozymes, as well as promote their development.  相似文献   

6.
Carbon dots (CDs) are emerging as a new class of carbon nanomaterials, which have inspired growing interest for their widespread applications in anti-counterfeiting, sensing, bioimaging, optoelectronic and energy-related fields. In terms of the concept of host–guest assembly, immobilizing CDs into porous materials (PMs) has proven to be an effective strategy to avoid the aggregation of bare CDs in solid state, in particular, the host—guest synergy with both merits of CDs and PMs affords composites promising properties in afterglow and tunable emissions, as well as optimizes their performance in optics, catalysis, and energy storage. This Minireview summarizes the recent progress in the research of CDs@PMs, and highlights synthetic strategies of constructing composites and roles of porous matrices in boosting the applications of CDs in diverse areas. The prospect of future exploration and challenges are proposed for designing advanced CDs-based functional nanocomposite materials.  相似文献   

7.
Cyclodextrins (CDs) are cyclic oligosaccharides that have found widespread application in numerous fields. CDs have revealed a number of various health benefits, making them potentially useful food supplements and nutraceuticals. In this study, the impact of α-, β-, and γ-CD at different concentrations (up to 8% of the flour weight) on the wheat dough and bread properties were investigated. The impact on dough properties was assessed by alveograph analysis, and it was found that especially β-CD affected the viscoelastic properties. This behavior correlates well with a direct interaction of the CDs with the proteins of the gluten network. The impact on bread volume and bread staling was also assessed. The bread volume was in general not significantly affected by the addition of up to 4% CD, except for 4% α-CD, which slightly increased the bread volume. Larger concentrations of CDs lead to decreasing bread volumes. Bread staling was investigated by texture analysis and low field nuclear magnetic resonance spectroscopy (LF-NMR) measurements, and no effect of the addition of CDs on the staling was observed. Up to 4% CD can, therefore, be added to wheat bread with only minor effects on the dough and bread properties.  相似文献   

8.
碳量子点作为一种新兴的荧光纳米材料,具有粒径分布均匀、光稳定性好、激发-发射波长可调控、表面可修饰等优良的性质,兼具低毒性、生物相容性好等优点,在分析检测和生物成像等领域展现出广阔的应用前景。而蚕砂是家蚕的干燥粪便,简单易得。利用蚕砂作为碳量子点制备原料,采用微波合成的方法制备得到了一种平均水合粒径为4.86 nm,含氮、硫修饰的碳量子点材料,可作为针对激发波长、pH、金属离子浓度、温度及溶剂极性的变化有着显著响应特性的碳量子点型荧光探针。该探针的荧光最大发射波长随激发波长或pH的增加而红移;荧光强度随温度或pH的降低而增加;随着金属离子,特别是铜离子的加入而逐渐降低,并随着EDTA络离子的加入而逐渐回复。在多种溶剂中该探针均具有较好的溶解度,当换用不同极性的溶剂时,随着溶剂极性的增加荧光发射波长逐渐红移。荧光性质随多重环境参数变化为该碳量子点在未来的生物检测和成像领域提供了广阔的应用前景。  相似文献   

9.
Carbon dots(CDs) with multi-color emissive properties and a high photoluminescent quantum yield(PLQY) have attracted great attention recently due to their potential applications in chemical,environmental,biological and photo-electronic fields.Solvent-dependent effect in photoluminescence provides a facial and effective approach to tune the emission of CDs.In this study,green emissive nitrogen-doped carbon dots(N-CDs) are synthesized from p-hydroquinone and ethylenediamine through a simple hydrothermal method.The as-prepared N-CDs possess a robust excitation-independent green luminescence and a high PLQY of up to 15.9%.Further spectroscopic characterization indicates that the high PLQY is achieved by the balance of nitrogen doping states and the surface passivation extent in CDs.The N-CDs also exhibit solvent-dependent multi-color emissive property and distinct PLQY in different solvents(the maximum can reach up to 25.3%).Furthermore,the as-prepared N-CDs are applied as fluorescence probes to detect acetone and H2O2 in water.This method has exhibited a low detection limit of acetone(less than 0.1 %) and a quick and linear response to the H_2O_2 with the concentration from 0 to 120 μmol/L.This work broadens the knowledge of applying CDs as probes in the bio and chemical sensing fields.  相似文献   

10.
Natural plants and Chinese herbal medicines are valuable resources. It is one of the new tasks for medical workers to study the new application fields of these resources. In this work, one kind of traditional Chinese herbal plant, Alisma, was chosen as a carbon source to synthesize the carbon dots(CDs). This kind of CDs has an amorphous carbon structure and shows strong stability to time, temperature, and ion strength. The results show that the degradation efficiency of malachite green dye can reach 100% in 4.5 h without illumination, and the degradation efficiency is better than that in dark environment. In addition, the CDs have also been successfully applied to HeLa cell imaging. Simple synthesis method, stable properties, good photodegradation and bioimaging applications make this material of great application value.  相似文献   

11.
Carbon dots (CDs), a new member of the carbon-based material family, possess unique properties, such as high fluorescence, non-toxicity, eco-friendliness, stability and cost-effectiveness. These properties helped CDs to receive tremendous attention in various fields, namely, biological, opto-electronic, bio-imaging and energy-related applications. Although CDs are widely explored in bio-imaging and bio-sensing applications, their effectiveness in forensic science and technology is comparatively new. In this review, applications of CDs pertaining to latent FPs recovery since 2015 to 2020 is summarized comprehensively.  相似文献   

12.
环糊精高分子   总被引:7,自引:0,他引:7  
环糊精以其独特的包合特性而引入注目,已被广泛地应用于化学分离及分析、药物控制释放、食品加工和环境保护等领域。环糊精高分子亦被证实具有包含、缓释及催化的能力,以及良好的机械强度和化学稳定性。本文综述了国内外关于环糊精高分子的类型、合成方法及实际应用的最新研究进展。  相似文献   

13.
ABSTRACT

A mixture of glucosyl-cyclomaltoheptaoses (β-cyclodextrins, βCDs) was prepared by glucoamylolysis of a mixture of maltosyl-βCDs which was produced on an industrial scale from maltose and β CD through the reverse action of Klebsiella pneumoniae pullulanase. Glucosyl-βCDs in the mixture were separated by HPLC on a reversed phase column and their molecular weights were measured by FAB-MS. In addition, the number of side-chains in each molecule was confirmed by methylation analysis and it was proved that the mixture comprised mainly of a monoglucosyl-βCD [G-β CD] and diglucosyl-β-CDs [(G)2-βCDs], and as a minor component triglucosyl-β CDs [(G)3-βCDs], and that G-, (G)2-, and (G)3-β CDs were produced in the ratios of 50%:45%:5%. The structures of three positional isomers of (G)2-β CD were established by HPLC analysis of partial hydrolyzates, 13C NMR spectroscopy, and chemical synthesis. Four regioisomeric (G)3-β CDs which could be isolated were characterized by 13C NMR spectroscopy.  相似文献   

14.
Carbon dots (CDs), a new class of fluorescent carbon nanoparticles (less than 10 nm in size), have been widely applied in various fields, including sensors, bioimaging, catalysis, light‐emitting devices (LEDs), and photoelectronic devices, owing to their unique properties such as low toxicity, bio‐compatibility, high photostability, easy surface modification, and up‐conversion fluorescence, over the past decades. Recently, multiple‐color‐emissive CDs, especially red‐emissive CDs (RCDs), have drawn much attention owing to their unique advantages, like the ability to penetrate the animal bodies without the disturbance of strong tissue autofluorescence, multiple‐color fluorescence displaying or sensing, and the capacity to be one essential component to obtain white LED (WLED). In this review, we focused on the progress of recently‐emerging RCDs in the past five years, including their synthetic methods (hydrothermal, solvothermal, reflux condensation and microwave techniques), influencing factors (precursors, solvents, elements doping, surface chemistry) and various applications (bioimaging, sensor, photocatalysis and WLEDs), with a perspective on the future advancements.  相似文献   

15.
炭-/石墨烯量子点作为新兴的炭纳米材料,因具有独特的小尺寸效应和丰富的边缘活性位点而在高性能超级电容器电极材料的研发方面展现出巨大潜力。针对目前炭-/石墨烯量子点在超级电容器电极材料方面的应用优势和存在的关键问题,本文以炭-/石墨烯量子点、量子点/导电炭复合材料、量子点/金属氧化物复合材料、量子点/导电聚合物复合材料以及量子点衍生炭这些电极材料为脉络,梳理了近年来该领域的发展状况,尝试阐释炭-/石墨烯量子点在电极材料、复合材料和衍生炭电极材料中所起到的关键作用,最后对炭-/石墨烯量子点电极材料的发展进行了展望。本综述以期为炭-/石墨烯量子点基电极材料的研究提供一定参考和依据。  相似文献   

16.
Carbon dots(CDs), novel luminescent zero-dimensional carbon nanomaterials, have been widely applied due to their low toxicity, optimal optical properties, and easy modification. However, the current controllable equipment and mechanism explanation of CDs are relatively vague and require urgent resolution.Full-color emission CDs, an essential CDs category, have attracted people’s attention given their light and color-tunable properties. In addition to a wider range of biological and optoelectroni...  相似文献   

17.
Cyclodextrins (CDs) are a series of cyclic oligosaccharides formed by amylose under the action of CD glucosyltransferase that is produced by Bacillus. After being modified by polymerization, substitution and grafting, high molecular weight cyclodextrin polymers (pCDs) containing multiple CD units can be obtained. pCDs retain the internal hydrophobic-external hydrophilic cavity structure characteristic of CDs, while also possessing the stability of polymer. They are a class of functional polymer materials with strong development potential and have been applied in many fields. This review introduces the research progress of pCDs, including the synthesis of pCDs and their applications in analytical separation science, materials science, and biomedicine.  相似文献   

18.
《中国化学快报》2023,34(10):108239
Carbon dots (CDs), a new building unit, have been revolutionizing the fields of biomedicine, bioimaging, and optoelectronics with their excellent physical, chemical, and biological properties. However, the difficulty of preparing excitation-dependent full-spectrum fluorescent CDs has seriously hindered their further research in fluorescence emission mechanisms and biomedicine. Here, we report full-spectrum fluorescent CDs that exhibit controlled emission changes from purple (380 nm) to red (613 nm) at room temperature by changing the excitation wavelength, and the excitation dependence was closely related to the regulation of sp2 and sp3 hybrid carbon structures by β-cyclodextrin-related groups. In addition, by regulating the content of β-cyclodextrin, the optimal quantum yields of full-spectrum fluorescent CDs were 8.97%, 8.35%, 7.90%, 9.69% and 17.4% at the excitation wavelengths of 340, 350, 390, 410 and 540 nm, respectively. Due to their excellent biocompatibility and color tunability, full-spectrum fluorescent CDs emitted bright and steady purple, blue, green, yellow, and red fluorescence in MCF-7 cells. Moreover, we optimized the imaging conditions of CDs and mitochondrial-specific dyes; and realized the mitochondrial-targeted co-localization imaging of purple, blue and green fluorescence. After that, we also explored the effect of full-spectrum fluorescent CDs in vivo fluorescence imaging through the intratumorally, subcutaneously, and caudal vein, and found that full-spectrum fluorescent CDs had good fluorescence imaging ability in vivo.  相似文献   

19.
《中国化学快报》2020,31(7):1792-1796
Accurate temperature measurement plays an important role in a variety of industrial processes and scientific researches. In our work, the dual-mode temperature response nanoprobe CDs-Tb-TMPDPA containing a two-photon ligand (4-(2,4,6-trimethoxyphenyl)-pyridine-2,6-dicarboxylic acid, TMPDPA) sensitized Tb3+ as a temperature-sensitive unit and carbon dots (CDs) as photothermal reagent and a fluorescence reference unit, have been designed and synthesized. In this system, both the fluorescence intensity ratio and the fluorescence lifetime have a good response to temperature. In addition, due to the excellent photothermal conversion capability of CDs, photothermal antibacterial ability was also tested. Based on the temperature dependence of the fluorescence and the two-photon excitation characteristics of CDs-Tb-TMPDPA, the nanoprobe can also be used in the anti-counterfeiting. Our finding opens a new prospect for the use of two-photon sensitized dual-mode fluorescence thermometers.  相似文献   

20.
Long‐lifetime room‐temperature phosphorescence (RTP) materials are important for many applications, but they are highly challenging materials owing to the spin‐forbidden nature of triplet exciton transitions. Herein, a facile, quick and gram‐scale method for the preparation of ultralong RTP (URTP) carbon dots (CDs) was developed via microwave‐assisted heating of ethanolamine and phosphoric acid aqueous solution. The CDs exhibit the longest RTP lifetime, 1.46 s (more than 10 s to naked eye) for CDs‐based materials to date. The doping of N and P elements is critical for the URTP which is considered to be favored by a n→π* transition facilitating intersystem crossing (ISC) for effectively populating triplet excitons. In addition, possibilities of formation of hydrogen bonds in the interior of the CDs may also play a significant role in producing RTP. Potential applications of the URTP CDs in the fields of anti‐counterfeiting and information protection are proposed and demonstrated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号