首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
The effect on metal-ion selectivity of the use of cyclohexenyl bridges in ligands in place of ethylene bridges is examined (selectivity is defined as the difference in log K1 for one metal ion relative to that of another with the same ligand). The syntheses of N,N'-bis(2-hydroxycyclohexyl)ethane-1,2-diamine (Cy2-en), N,N'-bis(2-hydroxycyclohexyl)propane-1,3-diamine (Cy2-tn), and 1,7-bis(2-hydroxycyclohexyl)-1,4,7-triazaheptane (Cy2-dien) are reported. The crystal structures of [Cu(Cy2-tn)(H2O)](ClO4)2 (1) and [Cu(Cy2-dien)](ClO4)2 (2) are reported. Characteristics of 1: monoclinic, Pn space group, a=11.627(2) A, b=7.8950(10) A, c=12.737(8) A, beta=98.15(3) degrees, Z=2, R=0.0524. Characteristics of 2: orthorhombic, Pbca space group, a=21.815(16) A, b=8.525(7) A, c=25.404(14) A, Z=8, R=0.0821. Structure 1 has the Cu(II) atom coordinated in the plane of the ligand to the two N donors and two O donors, with a long bond to an axially coordinated water molecule. 2 has three N donors, and one hydroxyl O donor from the ligand is coordinated in the plane around the Cu(II) atom, with the second hydroxyl O donor of the ligand occupying an axial site with a long Cu-O bond. The salient feature of both structures is the short H-H nonbonded distance between H atoms on the cyclohexenyl bridges and H atoms on the ethylene bridges of the ligand. These short contacts are important in explaining the metal-ion selectivities of these ligands. Formation constants, determined by glass-electrode potentiometry, for the Cy2-en (Cu(II), Ni(II), Zn(II), Cd(II), Pb(II)), Cy2-dien (Cu(II), Zn(II), Cd(II), Pb(II)), and Cy2-tn (Cu(II), Zn(II), Cd(II)) complexes are reported. These all show a strong shift in selectivity toward smaller metal ions compared with the analogous ligands, where ethylene bridges are present in place of the cyclohexenyl bridges of the ligands studied here. Molecular mechanics (MM) calculations are used to analyze these changes in selectivity. These calculations show that the short H-H contacts become shorter with increasing metal-ion size, which is suggested as the cause of the shift in the selectivity of ligands in favor of smaller metal ions when ethylene bridges are replaced with cyclohexenyl bridges. MM calculations are also used to rationalize, in terms of short H-H contacts, the fact that when the chelate ring contains two neutral O donors, more stable complexes result with cis placement of the donor atoms on the cyclohexenyl bridge, but with two N donors, trans placement of the donor atoms results in more stable complexes.  相似文献   

2.
Cu(II) and Ni(II) complexes of the general type [M(N2O2)] are described. The N2O2 ligands used are [N,N'-bis(2-hydroxy-6-methoxybenzylidene)propane-1,3-diamine] (HOMeSalpn) and [N,N'-bis(2-hydroxy-6-methoxybenzylidene)propane-1,2-diamine (HOMeSalpr). These complexes have been characterized by IR, UV-vis, CV, TG-DTA and 1H NMR spectroscopy. The electrochemical behavior of these complexes at a glassy carbon electrode in acetonitrile solution indicates that the first reduction process corresponding to Cu(II)-Cu(I) and Ni(II)-Ni(I) is electrochemically irreversible. The new copper complexes have been applied for the preparation of copper nanoparticles using non-ionic surfactant (Triton X-100) by thermal reduction. The copper nanoparticles with average size of 48nm were formed by thermal reduction of [N,N'-bis(2-hydroxy-6-methoxybenzylidene)propane-1,3-diamine]copper(II) in the presence of triphenylphosphine thus releasing the reduced copper and affording the high-purity copper nanoparticles.  相似文献   

3.
Single enantiomers of R-/S-methylbenzylamine (MBA) were found to selectively form adducts with the chiral non-C(2) symmetric Cu-salen complex N-(3,5-di-tert-butylsalicylidene)-N'-(salicylidene)-cyclohexane-1,2-diamine copper(II), hereafter labelled [Cu(3)]. The g/A spin Hamiltonian parameters of this Cu(II) complex showed a decrease in symmetry from axial to rhombic upon formation of the [Cu(3)] + MBA adducts. The selectivity in enantiomeric discrimination was found to be only 59 ± 5% in favour of the heterochiral R,R'-[Cu(3)] + S-MBA and S,S'-[Cu(3)] + R-MBA adducts. This was directly evidenced by W-band EPR spectroscopy. The observed low selectivity for enantiomer discrimination is primarily attributed to the loss of the bulky tert-butyl groups from the 3,5 positions of [Cu(3)] compared to the parent N,N'-bis(3,5-di-tert-butylsalicylidene)-cyclohexane-1,2-diamine copper(II) ligand (labelled [Cu(1)]). The structure of the [Cu(3)] complex in the presence and absence of coordinating amine was further investigated by analysis of the ligand hyperfine interactions, as revealed through Q-band CW-ENDOR, X-band Davies ENDOR and HYSCORE. (1)H couplings from the -NH(2) group of the amine, observed by ENDOR and HYSCORE, provided direct evidence of amine coordination.  相似文献   

4.
利用生物活性叠加原理,将"邻羟苯基"和"咪唑烷"分子片断有机结合,以水杨醛和乙二胺为起始原料,经缩合、NaBH4还原制得N,N'-二邻羟苄基乙二胺(2),进而与芳醛类化合物缩合关环,合成了8种N,N'-二(2-羟苄基)取代咪唑烷类化合物(3a~3h). 化合物的结构经1H NMR、IR、MS和元素分析等测试技术进行了表征. 结果表明,水杨醛与乙二胺的缩合反应,可专一性地生成对称双缩席夫碱化合物(1);芳醛上的取代基对缩合关环反应有显著影响,邻、对位吸电基可使芳醛的羰基活化,有利于缩合关环反应的进行,邻、对位供电基可使芳醛的羰基钝化,不利于缩合关环反应进行. 抑菌测试结果表明,质量分数为0.1%时,N,N'-二(2-羟苄基)取代咪唑烷化合物对不同菌株的抑菌活性具有明显的特异性,对白色念珠菌、大肠杆菌的抑菌率达100%.  相似文献   

5.
合成了一种新颖三齿配体(L),N-(4-甲基苯)-N’-(2-(4-甲基苯氨基)乙基)乙烷-1,2-二胺,并制备了它的四种过渡金属配合物,结合元素分析、红外、1 HNMR和摩尔电导,确定配合物的组成为[ML(NO3)2](M=CuⅡ,CoⅡ,NiⅡ,ZnⅡ).用X-ray单晶衍射解析了Zn-L和Ni-L的单晶结构.通过紫外、荧光光谱研究了这四种金属配合物与小牛胸腺DNA的相互作用,根据结果推断出配合物与DNA的作用方式可能均为静电结合.Cu-L,Co-L,Ni-L,Zn-L与DNA的结合常数分别为:3.34×104,7.65×103,2.15×104,2.40× 104.  相似文献   

6.
Two neutral dinuclear metallamacrocycles, [Cu2(hbca)2].2CHCl3.2H2O (1) and [Zn2(hbca)2].7H2O (2), have been assembled from reactions of the new rigid carbazole-based ligand H2hbca [N,N'-bis(2-hydroxobenzylidene)-9H-carbazole-3,6-diamine] with copper(II) or zinc(II) acetate. The extended aromatic ligand spacer is responsible for intermetallic antiferromagnetic exchange, which is rationalized using the spin-polarization formalism with the help of density functional theory calculations.  相似文献   

7.
A series of 3d-4f heterobimetallic phenylene-bridged Schiff base complexes of the general formula [Zn(mu-L1)Ln(NO3)3(S)n] [Ln = La (1), Nd (2), Gd (3), Er (4), Yb (5); S = H(2)O, EtOH; n = 1, 2; H2L1 = N,N'-bis(3-methoxysalicylidene)phenylene-1,2-diamine] and [Zn(mu-L2)Ln(NO3)3(H2O)n] [Ln = La (6), Nd (7), Gd (8), Er (9), Yb (10); n = 1, 2; H(2)L(2) = N,N'-bis(3-methoxy-5-p-tolylsalicylidene)phenylene-1,2-diamine] were synthesized and characterized. Complexes 1, 2, 4, and 7 were structurally characterized by X-ray crystallography. At room temperature in CH(3)CN, both neodymium(III) (2 and 7) and ytterbium(III) (5 and 10) complexes also exhibited, in addition to the ligand-centered emission in the UV-vis region, their lanthanide(III) ion emission in the near-infrared (NIR) region. The photophysical properties of the zinc(II) phenylene-bridged complexes (ZnL1 and ZnL2) were measured and compared with those of the corresponding zinc(II) ethylene-bridged complexes (ZnL3 and ZnL4). Our results revealed that, at 77 K, both ligand-centered triplet (3LC) and singlet (1LC) states existed for the ethylene-bridged complexes (ZnL3 and ZnL4), whereas only the (1)LC state was detected for the phenylene-bridged complexes (ZnL1 and ZnL2). NIR sensitization studies of [Zn(mu-L')Nd(NO3)3(H2O)n] (L' = L1-L4) complexes further showed that Nd3+ sensitization took place via the 3LC and 1LC states when the spacer between the imine groups of the Schiff base ligand was an ethylene and a phenylene unit, respectively. Ab initio calculations show that the observed differences can be attributed to the difference in the molecular vibrational properties and electron densities of the electronic states between the ethylene- and phenylene-bridged complexes.  相似文献   

8.
A novel DTPA-tris(amide) derivative ligand, DTPA-N,N'-bis[bis(n-butyl)]-N'-methyl-tris(amide)(H2L3) was synthesized. With Gd3+, it forms a positively charged [Gd(L3)]+ complex, whereas with Cu2+ and Zn2+ [ML3], [MHL3]+ and [M2L3]2+ species are formed. The protonation constants of H2L3 and the stability constants of the complexes were determined by pH potentiometry. The stability constants are lower than those for DTPA-N,N'-bis[bis(n-butyl)amide)](H3L2), due to the lower negative charge and reduced basicity of the amine nitrogens in (L3)2-. The kinetic stability of [Gd(L3)]+ was characterised by the rates of metal exchange reactions with Eu3+, Cu2+ and Zn2+. The exchange reactions, which occur via proton and metal ion assisted dissociation of [Gd(L3)]+, are significantly slower than for [Gd(DTPA)]2-, since the amide groups cannot be protonated and interact only weakly with the attacking metal ions. The relaxivities of [Gd(L2)] and [Gd(L3)]+ are constant between 10-20 degrees C, indicating a relatively slow water exchange. Above 25 degrees C, the relaxivities decrease, similarly to other Gd3+ DTPA-bis(amide) complexes. The pH dependence of the relaxivities for [Gd(L3)]+ shows a minimum at pH approximately 9, thus differs from the behaviour of Gd3+-DTPA-bis(amides) which have constant relaxivities at pH 3-8 and an increase below and above. The water exchange rates for [Gd(L2)(H2O)] and [Gd(L3)(H2O)]+, determined from a variable temperature (17)O NMR study, are lower than that for [Gd(DTPA)(H2O)]2-. This is a consequence of the lower negative charge and decreased steric crowding at the water binding site in amides as compared to carboxylate analogues. Substitution of the third acetate of DTPA5- with an amide, however, results in a less pronounced decrease in kex than substitution of the first two acetates. The activation volumes derived from a variable pressure (17)O NMR study prove a dissociative interchange and a limiting dissociative mechanism for [Gd(L2)(H2O)] and [Gd(L3)(H2O)]+, respectively.  相似文献   

9.
The synthesis of the terpyridinophane-type polyamine 2,6,9,12,16-pentaaza[17]-(5,5' ')-cyclo-(2,2':6',2' ')-terpyridinophane heptahydrobromide tetrahydrate (L.7HBr.4H2O) is described. L presents six protonation constants with values in the range 9.21-3.27 logarithmic units. L interacts with Cu2+ and Zn2+ forming in both cases, neutral, protonated, and hydroxylated mono- and binuclear complexes whose constants have been calculated by potentiometry in 0.15 M NaClO4 at 298.1 K. The crystal structures of the compounds [Cu(HL-carb)(H2O)](ClO4)3.2H2O (1) and [Cu2(H2L)(CO3)]2(ClO4)8.9H2O (2) have been solved by X-ray diffraction. In 1, the metal center presents square pyramidal geometry. The base of the pyramid is formed by the three nitrogen atoms of pyridine and one oxygen atom of a CO2 group which is forming a carbamate bond with the central nitrogen atom of the polyamine chain. The axial position is occupied by a water molecule. In 2, one Cu2+ is bound by the three pyridine nitrogens and the other one by the three central nitrogen atoms of the polyamine chain. The square planar coordination geometry is completed by a carbonate group taken up from the atmosphere that behaves as a bridging mu,mu'-ligand between the two centers. The pH-metric titrations on the ternary Cu2+-L-carbonate and Zn2+-L-carbonate systems show the extensive formation of adduct species which above pH 6 are formed quantitatively in solution. The stoichiometries of the main species formed in solution at pH = 6.8 agree with those found in the crystalline compounds. CO2 uptake by the Zn2+ and Cu2+ 1:1 complexes in aqueous solution has also been followed by recording the variations in the band at ca. 300 nm. The formation of the Zn2+ carbamate moiety has been evidenced by 13C NMR and ESI spectroscopy.  相似文献   

10.
The chemical reactions of a family of tetradentate pyridyl/imine ligands, L1, L2, and L3 (L1=[ N, N'-bis(2-pyridinylmethylene)]ethane-1,2-diamine; L2=[ N, N'-bis(pyridin-2-yl)benzylidene]ethane-1,2-diamine; L3=[ N, N'-bis(2-pyridinylmethylene)]propane-1,3-diamine), with Ni (II) in the presence of various pseudohalides (N3(-), SCN(-), and NCO(-)) have served to prepare six different complexes, [Ni 2(L1)2(N3)2](ClO4)2.H2O (1), [Ni 2(L2)2(N3)2](ClO4)2 (2), [Ni2(L2)2(NCS)4] (3), [Ni2(L2)2(NCO) 2](ClO4)2 (4), [Ni2(L3)2(NCO)2](ClO4)2 (5), and [Ni(L3)(N 3)2] (6), which have been characterized by X-ray crystallography. Interestingly, four of these complexes are dinuclear and exhibit end-on (EO) pseudohalide bridges (1, 2, 4, and 5), one is dinuclear and bridged exclusively by the tetradentate ligand (3), and one is mononuclear (6). The bulk magnetization of the complexes bridged by EO pseudohalides has been studied, revealing these ligands to mediate ferromagnetic coupling between the Ni(II) ions, with modeled coupling constants, J, of +31.62 (1), +28.42 (2), +2.81 (4), and +1.72 (5) cm(-1) (where the convention H=-2JS1S2 was used). The striking difference in the coupling intensity between N3(-) and NCO(-) has prompted an investigation by means of density functional theory calculations, which has confirmed the experimental results and provided insight into the reasons for this observation.  相似文献   

11.
Near infrared luminescence is observed in tetrametallic [Zn2Yb2L2(mu-OH)2Cl4].2MeCN which is obtained from the Zn3 Schiff-base complex [Zn3L2(NO3)2].MeOH, (H2L =N,N'-bis(5-bromo-3-methoxysalicylidene)propylene-1,3-diamine).  相似文献   

12.
The structure of the complexes of the type [Ni(L)(H(2)O)(2)](2+), where L is an amino alcohol ligand, L = N,N'-bis(2-hydroxyethyl)-ethane-1,2-diamine (BHEEN), N,N'-bis(2-hydroxycyclohexyl)-ethane-1,2-diamine (Cy(2)EN), and N,N'-bis(2-hydroxycyclopentyl)-ethane-1,2-diamine, (Cyp(2)EN) were investigated at the X3LYP/6-31+G(d,p) level of theory both in the gas phase and in solvent (CPCM model) to gain insight into factors that control the experimental log K(1) values. We find that (i) analyses based on Bader's quantum theory of atoms in molecules (QTAIM) are useful in providing significant insight into the nature of metal-ligand bonding and in clarifying the nature of weak "nonbonded" interactions in these complexes and (ii) the conventional explanation of complex stability in these sorts of complexes (based on considerations of bond lengths, bite angles and H-clashes) could be inadequate and indeed might be misleading. The strength of metal-ligand bonds follows the order Ni-N > Ni-OH ≥ Ni-OH(2); the bonds are predominantly ionic with some covalent character decreasing in the order Ni-N > Ni-OH > Ni-OH(2), with Ni-OH(2) being close to purely ionic. We predict that the cis complexes are preferred over the trans complexes because of (i) stronger bonding to the alcoholic O-donor atoms and (ii) more favorable intramolecular interactions, which appear to be important in determining the conformation of a metal-ligand complex. We show that (i) the flexibility of the ligand, which controls the Ni-OH bond length, and (ii) the ability of the ligand to donate electron density to the metal are likely to be important factors in determining values of log K(1). We find that the electron density at the ring critical point of the cyclopentyl moieties in Cyp(2)EN is much higher than that in the cyclohexyl moieties of Cy(2)EN and interpret this to mean that Cyp(2)EN is a poorer donor of electron density to a Lewis acid than Cy(2)EN.  相似文献   

13.
The geometric and electronic structure of an oxidized Cu complex ([CuSal](+); Sal = N,N'-bis(3,5-di-tert-butylsalicylidene)-1,2-cyclohexane-(1R,2R)-diamine) with a non-innocent salen ligand has been investigated both in the solid state and in solution. Integration of information from UV-vis-NIR spectroscopy, magnetic susceptibility, electrochemistry, resonance Raman spectroscopy, X-ray crystallography, X-ray absorption spectroscopy, and density functional theory calculations provides critical insights into the nature of the localization/delocalization of the oxidation locus. In contrast to the analogous Ni derivative [NiSal](+) (Storr, T.; et al. Angew. Chem., Int. Ed. 2007, 46, 5198), which exists solely in the Ni(II) ligand-radical form, the locus of oxidation is metal-based for [CuSal](+), affording exclusively a Cu(III) species in the solid state (4-300 K). Variable-temperature solution studies suggest that [CuSal](+) exists in a reversible spin-equilibrium between a ligand-radical species [Cu(II)Sal(*)](+) (S = 1) and the high-valent metal form [Cu(III)Sal](+) (S = 0), indicative of nearly isoenergetic species. It is surprising that a bis-imine-bis-phenolate ligation stabilizes the Cu(III) oxidation state, and even more surprising that in solution a spin equilibrium occurs without a change in coordination number. The oxidized tetrahydrosalen analogue [CuSal(red)](+) (Sal(red) = N,N'-bis(3,5-di- tert-butylhydroxybenzyl)-1,2-cyclohexane-(1R,2R)-diamine) exists as a temperature-invariant Cu(II)-ligand-radical complex in solution, demonstrating that ostensibly simple variations of the ligand structure affect the locus of oxidation in Cu-bis-phenoxide complexes.  相似文献   

14.
New hydrophobic chiral macrocyclic ligands L1-L3 with chiral diamino and thiophene moieties have been synthesized by the Schiff base condensation approach. Protonation constants of L1 and L2 were determined by potentiometry titration. Metal-ion binding experiments exhibited that L1 and L3 are pronounced in selective recognition, Ag+, Cu2+ and Ca2+ ions among the surveyed metal ions (Cu2+, Co2+, Ni2+, Zn2+, Cd2+, Pb2+, Ag+, Li+, Na+, K+, and Ca2+). L1 was found to spectroscopically detect the presence of Cu2+ and Ca2+ to function as a multiple readout sensor. The detection limit for Ca2+ ions was found to be 9.8 x 10(-5) M in CH2Cl2-MeOH solution. The trimeric chiral ligand L3 has been shown to be an efficient auxiliary in a Zn(II)-mediated enantioselective Henry reaction.  相似文献   

15.
The (bis)dansylated sulfonamide 1,2-C6H4(NHSO2C10H6-5-N(CH3)2)2 (1) extracted Pb(II) selectively from water into 1,2-dichloroethane via an ion-exchange mechanism and showed fluorescence quenching upon Pb(II) extraction. The distribution ratios for metal extraction (determined by ICP-MS) for Pb(II) were 133-1410 times higher than those for other metal cations [Co(II), Ni(II), Cu(II), Zn(II), and Cd(II)] under identical conditions. Fluorescence quenching was observed upon Pb(II) extraction, which was dependent on Pb(II) concentration. The monodansylated control, C6H5NHSO2C10H6-5-N(CH3)2 (2), showed neither extraction nor quenching, indicating that the fluorescence effects are a direct result of Pb coordination to 1. The observed selectivity for Pb(II) is ascribed to the formation of a low-coordinate binary Pb(II)-Sulfonamido complex in the organic phase.  相似文献   

16.
Complexes of Cu(II) with N,N'-bis(3-carboxy-1-oxopropanyl)-1,2-ethylenediamine(C(10)H(16)N(2)O(6),L(1)), N,N'-bis(3-carboxy-1-oxopropanyl)-1,2-phenylenediamine(C(14)H(16)N(2)O(6),L(2)), N,N'-bis(2-carboxy-1-oxophenelenyl)-1,2-phenylenediamine(C(22)H(16)N(2)O(6),L(3)) and N,N'-bis(3-carboxy-1-oxoprop-2-enyl)-1,2-phenylenediamine(C(14)H(12)N(2)O(6),L(4)) have been prepared and characterised by elemental analyses, vibrational spectra, magnetic susceptibility measurements, ligand field spectra, EPR spectra, thermal studies and X-ray diffraction spectra. Vibrational spectra indicate coordination of amide and carboxylate oxygens of the ligands giving a MO(4) square planar chromophore. Ligand field and EPR spectra support square planar geometry around Cu(II). [Cu(L(1))] complex has the maximum activation energy and [Cu(L(3))] complex has the minimum activation energy.  相似文献   

17.
In this paper we report a study on the mechanism of the enantiomeric separation of unmodified D,L-amino acids in RP-HPLC by copper(II) complexes of two tetradentate diaminodiamido ligands, (S,S)-N,N'-bis(phenylalanyl)ethanediamine (PheNN-2) and (S,S)-N,N'-bis(methylphenylalanyl)ethanediamine (Me2PheNN-2), added to the eluent. The aim is to investigate whether and how a copper(II) complex with no free equatorial positions can perform chiral discrimination of bidentate analytes such as unmodified amino acids. The problem is approached in a systematic way by: (a) varying the different chromatographic parameters (pH, selector concentration, eluent polarity); (b) performing chiral separation with the selector adsorbed on the stationary phase; (c) studying the ternary complex formation of these ligands with D- and L-amino acids in solution by glass electrode potentiometry and electrospray ionization MS. All the experimental data are consistent with a mechanism of chiral recognition, based on ligand exchange, which involves as selectors the species [Cu2L2H(-2)]2+ and [CuLH(-2)] and proceeds by displacement of two binding sites from the equatorial positions, giving rise to the ternary species [CuLA]+ and [CuLH(-1) A]. The most important factor responsible for chiral discrimination seems to be the affinity of the diastereomeric ternary complexes for the stationary phase since no enantioselectivity is observed in solution.  相似文献   

18.

Speciation studies in aqueous solution on the interaction of Cu2+ and Zn2+ with a series of polyaminic ligands N-naphthalen-1-ylmethyl-N′-{2-[(naphthalen-1-ylmethyl)-amino]-ethyl}-ethane-1,2-diamine (Ll), N-naphthalen-1-ylmethyl-N′-(2-{2-[(naphthalen-1-ylmethyl)-amino]-ethylamino}-ethyl)-ethane-1,2-diamine (L2) and N-naphthalen-1-ylmethyl-N′-[2-(2-{2-[(naphthalen-1-ylmethyl)-amino]-ethylamino}-ethylamino)-ethyl]-ethane-1,2-diamine (L3) containing two naphthylmethyl groups at their termini and N 1-(2-{2-[(naphthalen-1-ylmethyl)-amino]-ethylamino}-ethyl)-ethane-1,2-diamine (L4) containing just one naphthylmethyl group have been carried out at 298.1 K in 0.15 mol dm?3 NaCl. In the case of the tetraamines L2 and L4, their coordination capabilities towards Cd2+, Ni2+, Co2+ and Pb2+ have also been considered. The stability constants follow the general Irving-Williams sequence. The steady-state fluorescence emission studies on the interaction with metal ions show that while Cu2+ produces a chelation enhancement of the quenching (CHEQ), the interaction with Zn2+ leads to a chelation enhancement of the fluorescence (CHEF). Finally, ligands L1, L2 and L3 have been successfully covalently attached to silica surfaces and some preliminary results of their emissive properties are given.  相似文献   

19.
Zn(II) complex of L (N,N'-bis(2-pyridylmethyl)-N,N'-dimethyl-trans-1,2-diaminocyclohexane) binds chiral vicinal diamines (1,2-diphenylethylenediamine (dpen) and 1,2-diaminocyclohexane (dach)) stereoselectively. Crystallographic studies reveal that the ternary complex has the C2 symmetric cis-alpha topology. 1H NMR shows that the R,R form of the tetradentate zinc complex binds rapidly and reversibly to the R,R form of the diamine over the S,S form with a stereoselectivity of about 5:1. Although the diamine exchange rate is rapid it is slower than the NMR time scale, and distinct signals for the diastereomeric complexes are observed when racemic mixtures of the host and guest molecules are mixed. Origin of stereoselectivity is discussed in terms of steric effects.  相似文献   

20.
本文报道了2个手性Salen型过渡金属配合物[(N,N′-bis(3-t-butyl-5-methylsalicylidene)-1S,2S-cyclohexanediamine-N,N′,O,O′) nickel(Ⅱ)] (1)和[(N,N′-bis(3-t-butyl-5-methylsalicylidene)-1S,2S-cyclohexanediamine-N,N′,O,O′) copper(Ⅱ)] (2)的合成、波谱与结构表征。它们由(1S,2S)-环己烷-1,2-二胺和3-叔丁基-5-甲基-2-羟基苯甲醛发生席夫碱缩合反应制得的配体分别与Cu(Ⅱ)和Ni(Ⅱ)盐反应而得到。产品经过红外光谱、元素分析、电喷雾质谱、紫外和圆二色光谱等方法表征,并测定其晶体结构。结果表明配合物1和2中的中心金属离子Cu(Ⅱ)和Ni(Ⅱ)均为四配位平面正方形配位构型,而且在其晶体堆积中观察到一种通过芳环之间弱π-π相互作用形成的二聚结构。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号