首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Purpose

The purpose of this study was to describe the subphases of early post-contrast enhancement of the liver, using vessel enhancement patterns, and correlate these findings with enhancement patterns of abdominal organs.

Materials and Methods

A total of 114 patients who underwent gadolinium-enhanced abdominal magnetic resonance imaging examinations constituted the final study group, of which 56 were women (age range, 3–94 years; mean, 50 years) and 58 were men (age range, 6–85 years; mean, 54 years). Early post-contrast sequences in all patients were evaluated retrospectively by two reviewers for the determination of the presence of contrast enhancement in predetermined major vessels of the abdomen and qualitative and quantitative extent of enhancement of the renal cortex, spleen, pancreas and liver. Based on the overall findings, subphases of early contrast enhancement of the liver were described and quantitative extent of enhancement of organs was correlated with subphases of early contrast enhancement of the liver. Mann–Whitney U test and one-way unbalanced analysis of variance tests were used for the comparisons.

Results

Early hepatic arterial phase was observed in 14/114 patients, mid-hepatic arterial phase in 23/114 patients, late hepatic arterial phase in 33/114 patients, splenic vein only hepatic arterial dominant phase in 20/114 patients and hepatic arterial dominant phase in 24/114 patients. There was an overall association between the subphases of enhancement and the quantitative extent of enhancement for all studied organs (P<.0001).

Conclusion

The evaluation of vessel and organ enhancement patterns has allowed the characterization of five different subphases in early post-contrast enhancement of the liver. The quantitative extent of enhancement of abdominal organs also demonstrated significant correlation with these five subphases.  相似文献   

2.

Purpose

The purpose of our study was to compare diffusion-weighted MR imaging (DWI) with conventional dynamic MRI in terms of the assessment of small intrahepatic metastases from hepatocellular carcinoma (HCC).

Materials and Methods

In 24 patients with multifocal, small (≤2 cm) intrahepatic metastatic foci of advanced HCC, a total of 134 lesions (≤1 cm, n=81; >1 cm, n=53) were subjected to a comparative analysis of hepatic MRI including static and gadopentetate dimeglumine-enhanced dynamic imaging, and DWI using a single-shot spin-echo echo-planar MRI (b values=50, 400 and 800 s/mm2), by two independent reviewers.

Results

A larger number of the lesions were detected and diagnosed as intrahepatic metastases on DWI [Reviewer 1, 121 (90%); Reviewer 2, 117 (87%)] than on dynamic imaging [Reviewer 1, 107 (80%); Reviewer 2, 105 (78%)] (P<.05). For the 81 smaller lesions (≤1 cm), DWI was able to detect more lesions than dynamic imaging [Reviewer 1, 68 (84%) vs. 56 (69%), P=.008; Reviewer 2, 65 (80%) vs. 55 (68%), P=.031], but there was no statistically significant difference between the two image sets for larger (>1 cm) lesions.

Conclusion

Due to its higher detection rate of subcentimeter lesions, DWI could be considered complementary to dynamic MRI in the diagnosis of intrahepatic metastases of HCCs.  相似文献   

3.

Background  

The physiopathological mechanism underlying the tinnitus phenomenon is still the subject of an ongoing debate. Since oscillatory EEG activity is increasingly recognized as a fundamental hallmark of cortical integrative functions, this study investigates deviations from the norm of different resting EEG parameters in patients suffering from chronic tinnitus.  相似文献   

4.
The aim of this study was to establish whether enhancement of the liver by the MRI contrast agent ferumoxides could be effectively achieved at a reduced dose of 7.5 micromol/kg in patients with advanced liver cirrhosis. Forty-two liver transplant candidates with end-stage cirrhosis underwent SPIO-enhanced MRI at 1.5T, using either 15 micromol/kg or 7.5 micromol/kg ferumoxides. The lower dose of ferumoxides was also used in 21 non-cirrhotic patients with colorectal liver metastases who acted as a control group. The percentage signal intensity loss (PSIL) after SPIO was measured in all patients, and in those patients with tumors the post-SPIO contrast-to-noise ratio (CNR) was measured. The median PSIL after SPIO in the high dose cirrhotic (HDLC), low dose non-cirrhotic (LDNC) and low dose cirrhotic (LDLC) patients was 86.3%, 74.6%, and 64.2% respectively. These differences were significant using the Mann-Whitney U test. Tumors were found in 8 patients in the high dose cirrhotic group, 9 in the low dose cirrhotic group, and all 21 of the control group. No significant differences were found between the CNR values after SPIO in the 3 groups (median values HDLC 15.1, LDNC 23.7, LDLC 19.5). In patients with late-stage cirrhosis the PSIL after SPIO was significantly less at 7.5 micromol/kg than at 15 micromol/kg, but both doses produced a substantial loss of signal. Lesion to liver CNR was not adversely affected by using the lower dose, so when imaging at 1.5T the authors would recommend using 7.5 micromol/kg in patients with liver cirrhosis.  相似文献   

5.
The purpose of this study was to evaluate the value of Ferumoxide-enhanced magnetic resonance (MR) imaging in the detection of hepatic metastases in high-risk patients treated for colorectal cancer that have rising CEA. We used 19 patients treated previously for colorectal cancer with rising CEA levels underwent an unenhanced T(1)-weighted (T1W), T(2)-weighted (T2W), STIR, and Ferumoxide-enhanced hepatic MRI. Following these studies, a laparotomy was performed and the liver was evaluated by palpation and intraoperative ultrasound. Two observers who were blinded to surgical results evaluated each MR sequence separately. The number of lesions considered highly suspicious for metastatic lesions were determined for each sequence and were compared to the results of surgery. The McNemar test was used to compare the outcomes of the different sequences. MR Imaging was unable to detect small (<5 mm) metastases discovered at surgery. The best non-contrast sequences for detecting metastases were the STIR with 42% sensitivity, 83% specificity and an overall accuracy of 56% and the T1W sequence (sensitivity 38%, specificity 100%, accuracy 57%), which were not significantly different (p 0.4). The noncontrast T2W sequence had a sensitivity of 29% and a specificity of 77% with an overall accuracy of 46%. When all pre contrast scans were grouped together the common sensitivity was 42%, specificity was 77% and accuracy was 54%. The post-ferumoxide T(2)W scans had a sensitivity of 42%, specificity of 85%, and accuracy of 57%, but did not detect any additional lesions. There was no statistical difference between the pre- and post-contrast studies with regard to identifying patients with metastatic disease (p 0.1). In conclusion, we found small hepatic metastases in patients with early signs of recurrent colorectal cancer are difficult to detect on MRI. Ferumoxide-enhanced MRI was unable to detect additional hepatic metastases and performed no better than unenhanced MRI in detecting small hepatic metastasis.  相似文献   

6.
We theoretically investigate surface plasmon resonance properties in Au and Ag cubic nanoparticles and find a novel plasmonic mode that exhibits simultaneous low extinction and high local field enhancement properties. We analyse this mode from different aspects by looking at the distribution patterns of local field intensity, energy flux, absorption and charge density. We find that in the mode the polarized charge is highly densified in a very limited volume around the corner of the nanocube and results in very strong local field enhancement. Perturbations of the incident energy flux and light absorption are also strongly localized in this small volume of the corner region, leading to both low absorption and low scattering cross section. As a result, the extinction is low for the mode. Metal nanoparticles involving such peculiar modes may be useful for constructing nonlinear compound materials with low linear absorption and high nonlinearity.  相似文献   

7.
ObjectiveTo investigate the clinical feasibility of single-breath-hold (SBH) T2-weighted (T2WI) liver MRI with deep learning-based reconstruction in the evaluation of image quality and lesion delineation, compared with conventional multi-breath-hold (MBH) T2WI.MethodsOne hundred and fifty-two adult patients with suspected liver disease were prospectively enrolled. Two independent readers reviewed images acquired with conventional MBH-T2WI and SBH-T2WI at 3.0 T MR scanner. For image quality analyses, motion artifacts scores and boundary sharpness scores were compared using nonparametric Wilcoxon matched pairs tests between MBH-T2WI and SBH-T2WI. With the reference standard, 89 patients with 376 index lesions were included for lesion analyses. The lesion detection rates were compared by chi-square test, the lesion conspicuity scores and lesion-liver contrast ratio (CR) were compared using nonparametric Wilcoxon matched pairs tests between the two sequences.ResultsFor both readers, motion artifacts scores of SBH-T2WI were significantly lower than MBH-T2WI (P < 0.001). Boundary sharpness scores of SBH-T2WI were significantly higher than MBH-T2WI (P < 0.001). The lesion detection rates for SBH-T2WI were significantly higher than MBH-T2WI (P < 0.001); the differences of lesion detection rates between the two sequences were statistically significant for small (≤ 10 mm) liver lesions (P < 0.001), while not significant for larger (> 10 mm) lesions (P > 0.05). Lesion conspicuity scores were significantly higher on SBH-T2WI than MBH-T2WI in the entire cohort as well as in both stratified subgroups of lesions ≤10 mm and > 10 mm (P < 0.001 for all). CRs for focal liver lesions were also significantly higher with SBH-T2WI (P < 0.001).ConclusionThe SBH-T2WI sequence with deep-learning based reconstruction showed promising performance as it provided significantly better image quality, lesion detectability, lesion conspicuity and contrast within a single breath-hold, compared with the conventional MBH-T2WI.  相似文献   

8.
BackgroundArtifacts caused by respiratory motion or ventilation-induced chest movements are a major problem for thoracic MRI, as they can obscure important anatomical structures such as lymph node metastases. We compared image quality of routine breathhold with intermittent apnea during controlled mechanical ventilation of patients under general anesthesia as the ideal situation without respiratory motion in the detection and characterization of regional lymph nodes in esophageal cancer.MethodsIn this prospective study, 10 patients treated for esophageal cancer underwent ultrasmall superparamagnetic iron oxide (USPIO) enhanced MRI scans. Before neoadjuvant therapy, MRI scans were acquired with a routine breathhold technique. After neoadjuvant therapy, patients were scanned under general anesthesia immediately prior to surgery with controlled mechanical ventilation. The image quality was compared using a Likert scale questionnaire based on visibility of anatomical structures and image artifacts.ResultsMRI with controlled mechanical ventilation and prolonged controlled apnea of 4 min was safe and feasible. All cardio-respiratory monitoring parameters remained stable during the apnea phases. Mediastinal and upper abdominal lymph nodes down to 2 mm in size could be visualized with all sequences. All image quality criteria, including visibility of thoracic structures and regional lymph nodes were scored higher using the controlled ventilation sequences compared to the routine breathhold phase.ConclusionUSPIO-enhanced MRI with controlled mechanical ventilation is superior to routine breathhold MRI in visualizing lymph nodes, which warrants new motion reduction techniques to use MRI for the detection of lymph node metastases in patients with esophageal cancer.  相似文献   

9.
This study evaluates the robustness of a magnetic resonance (MR) fat quantification method to changes in R2* caused by an intravenous infusion of superparamagnetic iron oxide (SPIO) contrast agent. The R2* and proton density fat fraction (PDFF) were measured in liver and spine in 14 subjects using an investigational sequence (IDEAL IQ) provided by the MR scanner vendor. Measurements were made before and after SPIO infusion. Results showed SPIO significantly increased R2* in both liver (p = 8.8 × 10− 8) and spine (p =1.3 × 10− 2) but PDFFs were not significantly different in either the liver (p = 5.5 × 10− 1) or the spine (p = 5.6 × 10− 1). These results confirm that the IDEAL IQ method of fat quantification is robust to changes in R2*.  相似文献   

10.
Fifteen patients with liver cirrhosis and two control groups were examined. The first control group consisted of 7 healthy volunteers, and the second group of 17 patients with nonfocal liver diseases. The T1 and T2 relaxation times were calculated from signal intensities read out from a region of interest centrally located in the liver. T1 relaxation time was longer in the patients with liver cirrhosis than in the two reference groups. Ten patients had a liver biopsy taken prior to the MRI study. No correlation was found between histopathology and the measured relaxation times.  相似文献   

11.
PURPOSE: To describe the use of 3.0-T magnetic resonance imaging (MRI) for the evaluation of chronic liver diseases. MATERIALS AND METHODS: Two groups of patients who had chronic liver diseases and underwent 3.0-T MRI for evaluation of the liver were included in the study. The first group of patients included 66 consecutive patients (33 male, 33 female; mean age+/-standard deviation, 56+/-11). The second group of patients included 30 consecutive patients (18 males, 12 females; mean age+/-standard deviation, 53+/-10) in whom Variable-Rate Selective Excitation (VERSE) pulses and improved adjustments procedure were used during the acquisitions. Imaging findings of chronic liver diseases, predetermined artifacts and image quality of all individual sequences in the first group and predetermined artifacts and image quality of T2-weighted sequences in the second group were reviewed retrospectively and independently by two reviewers. chi-Square tests were used to compare the findings between two groups of patients and individual sequences. Kappa statistics were used to determine the extent of agreement between the reviewers. RESULTS: Fifteen dysplastic nodules in 6 of 66 (9%) patients and 12 hepatocellular carcinomas in 11 of 66 (17%) patients were detected. Excluding motion artifacts, three-dimensional (3D) T1-weighted gradient-echo (GE) sequence was the least affected sequence by the artifacts. Image quality of T1-weighted 3D-GE sequences was excellent in 43 of 66 (65%) patients. In-phase and out-of-phase T1-weighted spoiled GE (SGE) images were fair in 62 of 66 (94%) and 61 of 66 (92%) patients, respectively. The image quality of short tau inversion recovery (STIR) and half-Fourier rapid acquisition with relaxation enhancement (RARE) sequences were fair in 31 of 66 (47%) and 53 of 66 (80%) patients. STIR and half-Fourier RARE sequences in the second group demonstrated significantly better image quality (P=.03 and P<.0001). CONCLUSION: 3.0-T MRI allows the acquisition of very high quality postgadolinium 3D-GE sequence, which permitted the detection and characterization of lesions in the setting of chronic liver diseases. The use of VERSE pulses and improved adjustments procedure improved the image quality of T2-weighted sequences. In-phase/out-of-phase SGE sequences are at present of fair quality.  相似文献   

12.

Purpose

We evaluated the ability of diffusion-weighted imaging (DWI) to detect bone metastasis by comparing the results obtained using this modality with those obtained using 11C-methionine (MET) positron emission tomography (PET) and bone scintigraphy.

Materials and methods

This retrospective study involved 29 patients with bone metastasis. DWI was obtained using a single-shot echo planar imaging (EPI) sequence with fat suppression using a short inversion time inversion recovery sequence. The detection capabilities of DWI for bone metastases were compared with those of whole body MET PET (in 19 patients) and 99mTc-methylene diphosphonate bone scintigraphy (in 15 patients).

Results

Among the 19 patients who were diagnosed using DWI and PET, the PET identified 39 bone metastases, while the DWI identified 60 metastases out of 69 metastases revealed with conventional magnetic resonance imaging (MRI). Among the 15 patients who were diagnosed using DWI and bone scintigraphy, the bone scintigraphy identified 18 bone metastases, while the DWI identified 72 metastases out of 78 metastases revealed with conventional MRI. The overall bone metastasis detection rates were 56.5% for PET, 23.1% for bone scintigraphy and 92.3% for DWI.

Conclusion

DWI is a very sensitive method for detecting bone metastasis and is superior to MET PET and bone scintigraphy in terms of its detection capabilities.  相似文献   

13.

Purpose

To compare the diagnostic performance of the noncontrast MRI including DWI to the standard MRI for detecting hepatic malignancies in patients with chronic liver disease.

Materials and methods

We included 135 patients with 136 histologically-confirmed hepatocellular carcinomas (HCCs), 12 cholangiocarcinomas, and 34 benign lesions (≤ 2.0 cm), and 22 patients with cirrhosis but no focal liver lesion who underwent 3.0 T liver MRI. Noncontrast MRI set (T1- and T2-weighted images and DWI) and standard MRI set (gadoxetic acid-enhanced and noncontrast MRI) were analyzed independently by three observers to detect liver malignancies using receiver operating characteristic analysis.

Results

The Az value of the noncontrast MRI (mean, 0.906) was not inferior to that of the combined MRI (mean, 0.924) for detecting malignancies by all observers (P > 0.05). For each observer, no significant difference was found in the sensitivity and specificity between the two MRI sets for detecting liver malignancies and distinguishing them from benign lesions (P > 0.05), whereas negative predictive value was higher with the combined MRI than with the noncontrast MRI (P = 0.0001). When using pooled data, the sensitivity of the combined MRI (mean 94.8%) was higher than that of the noncontrast MRI (mean, 91.7%) (P = 0.001), whereas specificity was equivalent (78.6% vs 77.5%).

Conclusion

Noncontrast MRI including DWI showed reasonable performance compared to the combined gadoxetic acid-enhanced and noncontrast MRI set for detecting HCC and cholangiocarcinoma and differentiating them from benign lesions in patients with chronic liver disease.  相似文献   

14.
Gradient echo (GE) and echo planar imaging (EPI) techniques are two different approaches to functional MRI (fMRI). In contrast to GE sequences, the ultra short EPI technique facilitates fMRI experiments with high spatial and temporal resolution or mapping of the whole brain. Although it has become the method of choice for fMRI, EPI is generally restricted to modern scanners with a strong gradient system. The aim of our study was to evaluate the applicability of EPI for fMRI of the motor cortex using a 1.5 T scanner with a conventional gradient system of 10 mT/m (rise time: 1 ms). Therefore, EPI was compared with a well-established high resolution fast low angle shot (FLASH) technique (matrix size 1282). The FLASH technique was applied additionally with a 642 matrix size to exclude influences caused by different spatial resolution, because the EPI sequence was restricted to a 642 matrix size. A total of 35 healthy volunteers were included in this study. The task consisted of clenching and spreading of the right hand. FLASH and EPI techniques were compared regarding geometric distortions as well as qualitative and quantitative fMRI criteria: Mean signal increase between activation and rest and the area of activation were measured within the contralateral, ipsilateral, and supplementary motor cortex. The quality of subtraction images between activation and rest, as well as the quality of z-maps and time course within activated regions of interest, was evaluated visually. EPI revealed significant distortions of the anterior and postior brain margins; lateral distortions (relevant for the motor cortex) could be neglected in most cases. The mean signal increase was significantly higher using FLASH 1282 compared to FLASH 642 and EPI 642, whereas the activated areas proved to be smaller in FLASH 1282 functional images. Both results can be explained by well-documented partial volume effects, caused by different voxel size. Similar quality of the subtraction images and of the time courses in different regions of interest were found for all techniques under investigation, but slightly reduced quality of z-map in FLASH 1282. Within the limits of reproducibility and measurement accuracy, the location of contralateral activation was similar using FLASH and EPI sequences. In conclusion, EPI proved to be a reliable technique for fMRI of the motor cortex, even on an MR scanner with a conventional gradient system.  相似文献   

15.
The effect of varying fluence for laser microprocessing of Al and Cu is studied at a pulse duration of 120 fs at atmospheric pressure. For low fluences (<2 J/cm2) quality is relatively good for both metals but completely melt free processing does not seem to be possible. For fluences above 2 J/cm2, a huge difference is observed between Al and Cu. Important roughness and clear evidence for remelted and recast matter solidified like spikes, as well as significant burrs at the edge are observed for Al. In the case of Cu the micromachining quality is high, with practically no redeposit matter and low roughness in the bottom of the groove. An analysis is given in terms of processes of a thermal nature underlining the role of electron-phonon coupling. The existence of an optimal point for micromachining is also evidenced. PACS 79.20.Ds; 42.62.Cf; 81.65.Cf  相似文献   

16.
Plasticized polymer electrolyte composite has been prepared in the form of a film by solution casting method. Poly (ethyl methacrylate) (PEMA) acts as a host polymer and is doped with Sodium Iodide (NaI). Ethylene carbonate (EC) added as a plasticizer and also enhances amorphicity of the polymer electrolyte. The electrical conductivity of the PEMA+NaI was evaluated using complex impedance spectroscopy. Maximum ionic conductivity obtained at room temperature was 8.75 × 10?6 S/cm with the composition of PEMA: NaI (30%) + 60% EC. The conductivity further increased with increase in temperature and moved up to 5.8 × 10?5 S/cm. Scanning electron microscopy was used to study the surface morphology of the composite film. Fourier transform infrared ray and X-ray diffraction data confirmed the complexation of material.  相似文献   

17.
MR imaging contrast of brain metastases after cumulative doses of gadolinium chelate is quantitated and compared in order to assess the clinical utility of high dosage. T1-weighted spin-echo MR images of 39 patients with metastatic brain tumors were made before and after each of three equal doses cumulating to 0.1, 0.2 and 0.3 mmol Gd-complex per kg body weight. Quantitation of MRI contrast was limited to homogeneous brain metastases larger than 3 mm (n = 246). Post-Gd MRI contrast doubled with dose escalation from 0.1 to 0.3 mmol/kg and also increased with lesion size, by a factor of 2.5 between metastases of 3 and 16 mm diameter, that is after correcting for partial volume effect. At 0.2 and 0.3 mmol/kg the respective numbers of visible metastases increased by 15% and 43% compared with 0.1 mmol/kg (p < 0.0001, both). Image contrast figures differed significantly between doses (p = 0.018). Both the number of metastases and the image contrast is significantly higher when dose escalation is performed. It is indicated that the number of detected metastases will increase further at Gd doses beyond 0.3 mmol/kg. Post-Gd MRI contrast increases with lesion size, to an extent that can not be attributed to partial volume attenuation.  相似文献   

18.
The purpose of this study was to examine the feasibility of quantifying myocardial blood flow (MBF) and rate of myocardial oxygen consumption (MVO(2)) during pharmacologically induced stress without using a contrast agent. The former was measured by the arterial spin labeling (ASL) method and the latter was obtained by measuring the oxygen extraction fraction (OEF) with the magnetic resonance imaging (MRI) blood oxygenation level-dependent effect and Fick's law. The MRI results were compared with the established positron emission tomography (PET) methods. Six mongrel dogs with induced acute moderate left coronary artery stenosis were scanned using a clinical PET and a 1.5-T MRI system, in the same day. Regional MBF, myocardial OEF and MVO(2) were measured with both imaging modalities. Correlation coefficients (R(2)) of the three myocardial indexes (MBF, OEF and MVO(2)) between MRI and PET methods ranged from 0.70 to 0.93. Bland-Altman statistics demonstrated that the estimated precision of the limits of agreement between MRI and PET measurements varied from 18% (OEF) to 37% (MBF) and 45% (MVO(2)). The detected changes in these indexes, at rest and during dobutamine stress, were similar between two image modalities. The proposed noncontrast MRI technique is a promising method to quantitatively assess myocardial perfusion and oxygenation.  相似文献   

19.
Thirty-nine patients with liver tumors were examined using MRI at 0.5 T before and after intravenous bolus injection of either 0.1 mmol/kg (n = 18) or 0.2 mmol/kg (n = 21) of Gadolinium-Dota, using spin-echo T1-and T2-weighted sequences before injections and spin-echo or gradient-echo sequences after injection. When contrast-to-noise (C/N) data were normalized relative to time, optimal mean C/N was observed after gadolinium injection. However, subjective study and case-by-case C/N measurement showed better contrast for SE 2000/60 and CT with injection in 62% and 42% of cases, respectively.  相似文献   

20.
A new iterative extrapolation image reconstruction algorithm is presented, which enhances low resolution metabolic magnetic resonance images (MRI) with information about the bounds of signal sources obtained from a priori anatomic proton ((1)H) MRI. The algorithm ameliorates partial volume and ringing artefacts, leaving unchanged local metabolic heterogeneity that is present in the original dataset but not evident at (1)H MRI. Therefore, it is ideally suited to metabolic studies of ischemia, infarction and other diseases where the extent of the abnormality at (1)H MRI is uncertain. The performance of the algorithm is assessed by simulations, MRI of phantoms, and by surface coil 23Na MRI studies of canine myocardial infarction on a clinical scanner where the injury was not evident at (1)H MRI. The algorithm includes corrections for transverse field inhomogeneity, and for the leakage of intense signals into regions of interest such as 23Na MRI signals from ventricular blood ringing into the myocardium. The simulations showed that the algorithm reduced ringing artefacts by 15%, was stable at low SNR ( approximately 7), but is sensitive to the positioning of the (1)H MRI boundaries. The 23Na MRI showed hyperenhancement of regions identified as infarcted at post-mortem histological staining. The areas of hyperenhancement were measured by five independent observers in four 23Na images of infarction reconstructed with and without the algorithm. The infarct areas were correlated with areas determined by post-mortem histological staining with coefficient 0.85 for the enhanced images, compared to 0.58 with the conventional images. The scatter in the amplitude and in the area measurements of ischemia-associated hyper-enhancement in 23Na MRI was reduced by the algorithm by 1.6-fold and by at least 3-fold, respectively, demonstrating its ability to substantially improve quantification of the extent and intensity of metabolic changes in injured tissue that is not evident by (1)H MRI.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号