首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
利用分子动力学中的静态结构计算方法对Pd,Ag及Cu原子在面心立方铜的台阶表面扩散过程中的Ehrlich-Schwoebel(ES)势垒进行了模拟计算,研究了各种台阶表面情况下增原子扩散过程中的ES势垒;讨论了与衬底互溶的金属和与衬底不互溶的金属增原子扩散的ES势垒的异同,并将模拟结果与同质情况的研究结果进行了对比. 结果表明: 1)在同质和异质扩散过程中ES势垒随着台阶高度的变化关系是相似的,即随着台阶高度的增加,ES势垒逐渐增加;当台阶高度达到某一高度时ES势垒将趋于定值. 2)在跳跃机理下,与Cu互溶的金属(Pd)在Cu表面台阶上扩散的ES势垒最大,其次是Cu,最小的是与Cu不互溶的金属 (Ag);而在交换机理下,与Cu不互溶的金属(Ag)在Cu表面台阶上扩散的ES势垒最大,其次是Cu,最小的是与Cu互溶的金属(Pd). 3)对大多数台阶的情况,交换机理支配着原子在台阶边缘的扩散行为;且表面台阶高度对交换扩散过程影响较大.  相似文献   

2.
The processes of multilayer thin Cu films grown on Cu (100) surfaces at elevated temperature (250--400\,K) are simulated by mean of kinetic Monte Carlo (KMC) method, where the realistic growth model and physical parameters are used. The effects of small island (dimer and trimer) diffusion, edge diffusion along the islands, exchange of the adatom with an atom in the existing island, as well as mass transport between interlayers are included in the simulation model. Emphasis is placed on revealing the influence of the Ehrlich--Schwoebel (ES) barrier on growth mode and morphology during multilayer thin film growth. We present numerical evidence that the ES barrier does exist for the Cu/Cu(100) system and an ES barrier $E_{\rm B} >0.125$\,eV is estimated from a comparison of the KMC simulation with the realistic experimental images. The transitions of growth modes with growth conditions and the influence of exchange barrier on growth mode are also investigated.  相似文献   

3.
We study the equilibration of an initial surface of conic shape that consists of concentric circular monolayers by Kinetic Monte Carlo (KMC) method. The kinetic processes of attachment and/or detachment of particles to/from steps, diffusion of particles on the surface, along a step or cluster edges are considered. The difference between an up hill and down hill motion of a particle at a step are taken into account through the Ehrlich-Schwoebel (ES) barrier. The height of the cone evolves as h(0) − h(t) ~ t 1/α where h(0) is the initial height of the surface and α is approximately 2. The ES barrier slows down the equilibration of the surface but the time dependence remains as given above. The exponent α depends neither on ES barrier nor on the temperature. The equilibration is found also to be independent of energy barrier to the motion of particles along the step edges. The number of particles in each layer except the top two circular layers is found to decrease as t 0.57.  相似文献   

4.
A scanning tunneling microscopy/atomic force microscopy study is presented of a kinetically driven growth instability, which leads to the formation of ripples during Si homoepitaxy on slightly vicinal Si(0 0 1) surfaces miscut in [1 1 0] direction. The instability is identified as step bunching, that occurs under step-flow growth conditions and vanishes both during low-temperature island growth and at high temperatures. We demonstrate, that the growth instability with the same characteristics is observed in two dimensional kinetic Monte Carlo simulation with included Si(0 0 1)-like diffusion anisotropy. The instability is mainly caused by the interplay between diffusion anisotropy and the attachment/detachment kinetics at the different step types on Si(0 0 1) surface. This new instability mechanism does not require any additional step edge barriers to diffusion of adatoms. In addition, the evolution of ripple height and periodicity was analyzed experimentally as a function of layer thickness. A lateral “ripple-zipper” mechanism is proposed for the coarsening of the ripples.  相似文献   

5.
The current–voltage (IV) and capacitance–voltage (CV) characteristics of H-terminated Pb/p-Si/Al contacts fabricated by us have been measured in the temperature range of 77–300 K. The experimental values of the barrier height (BH) Φbo and the ideality factor n for the device range from 0.674 and 1.072 eV (at 300 K) to 0.352 and 2.452 eV (at 77 K), respectively. The ideality factors become larger with lowering temperature while the barrier height decreases. The Φbo(n) plot shows a linear dependence in the temperature range of 77–300 K that can be explained by the barrier inhomogeneity at the metal/semiconductor interface. The extrapolation of the linear Φbo(n) plot to n = 1 has given a homogeneous barrier height of approximately 0.713 eV for the Pb/p-Si(1 0 0) contact. A Φbo versus 1/T plot was drawn to obtain evidence of a Gaussian distribution of the BHs, and values of and σs = 80.5 mV for the mean BH and zero-bias standard deviation have been obtained from this plot, respectively. Then, a modified versus 1/T plot gives and A* as 0.828 eV and 54.89 A/cm2 K2, respectively. Furthermore, an average value of −0.687 meV/K for the temperature coefficient has been obtained, the value of −0.687 meV/K for hydrogen terminated p-type Si differs from those given for p-type Si without hydrogen termination in the literature.  相似文献   

6.
A concave-shaped surface has been prepared in a 6H–SiC(0 0 0 1) substrate by mechanical grinding. As a consequence, the different crystallographic planes building up the 6H–SiC polytype are cut under continuously changing polar angles in all azimuthal directions. Through hydrogen etching, this curved surface breaks up into a whole set of surfaces vicinal to the initial 6H(0 0 0 1) orientation. The local structural reorganisation after hydrogen etching has been studied by scanning electron microscopy (SEM) and atomic force microscopy (AFM). Two types of local bond environments are present at the step edges leading to a strong anisotropy in the surface etching with hydrogen. As a result, the distribution of the terrace width and the step heights varies with the azimuthal angle and reflects the sixfold symmetry of the bulk crystal. For most azimuthal directions, an alternation of large and small terraces, separated by steps of 0.75 nm heights (height of half the 6H polytype, three bilayers) is observed and only for well defined azimuthal directions, equally spaced terraces separated by steps of 1.5 nm height (one unit cell of 6H–SiC, six bilayers) are found. In addition, the polar variations have been studied by taking various line-scans along the concave-shaped surface with AFM. It seems that for polar angles above 3°, step bunching of several SiC steps occurs whereas below 3° the bimodal terrace width distribution is observed.  相似文献   

7.
Interlayer diffusion in epitaxial systems with a high energy barrier at the atomic steps – the so-called Ehrlich–Schwoebel (ES) barrier – is strongly reduced. As a consequence of this, a continuous accumulation of roughness takes place during growth. This undesirable effect can be corrected by using surfactant agents. We have studied the influence of the ES barrier on the preparation of epitaxial films on Cu(111), and the surfactant effect of a monolayer of Pb. Received: 21 April 1999 / Accepted: 17 August 1999 / Published online: 6 October 1999  相似文献   

8.
A thermally stable thin diffusion barrier in Cu/Si contacts was developed using a thin nano-crystalline ZrN film. The Cu/ZrN/Si contact system using a reactively sputtered ZrN barrier with 20 nm in thickness consisting of several to 10 nm grains tolerated annealing at 600 °C for 1 h without any Cu penetration through the barrier. This was interpreted that the scarce structural change in the prepared nano-crystalline ZrN film due to annealing was favorite for the thermal stability of thin barrier application.  相似文献   

9.
Wolf-Villain (WV) model is a simple model used to study ideal molecular beam epitaxy (MBE) growth by using computer simulations. In this model, an adatom diffuses instantaneously within a finite diffusion length to maximize its coordination number. We study statistical properties of thin films grown by this model. The morphology of the WV model is found to be kinetically rough with a downhill particle diffusion current. In real MBE growth, however, there are additional factors such as the existence of a potential barrier that is known as the Ehrlich-Schwoebel (ES) barrier. The ES barrier is an additional barrier for an adatom that diffuses over a step edge from the upper to a lower terrace which is known to induce an uphill particle current. We found that with the addition of the ES barrier, the WV-ES model morphology is rough with mound formation on the surface when the barrier is strong enough. To confirm these results, the correlation function is also studied. We find no oscillation in the correlation function in the WV model. For the WV-ES model, the correlation function oscillates. These results confirm that a strong enough ES barrier can cause mound formation on the WV surface in our study.  相似文献   

10.
The current–voltage (IV) characteristics of Au/polyaniline(PANI)/p-Si/Al structures were determined at various temperatures in the range of 90–300 K. The evaluation of the experimental IV data reveals a decrease of the zero-bias barrier height (BH) and an increase of the ideality factor (n) with decreasing temperature. It was shown that the occurrence of a Gaussian distribution of then BHs is responsible for the decrease of the apparent BH, increase of the ideality factor n due to barrier height imhomogeneities that prevail at the interface. A Φb0 versus 1/T plot has been drawn for evidence of the Gaussian distribution of the barrier height, and and σ0 = 0.0943 V for the mean barrier height and zero-bias standard deviation, respectively, have been obtained from this plot. Thus, a modified versus 1/T plot gives and A* as 0.885 eV and A* = 55.80 A/K2 cm2, respectively. Hence, it can be concluded that Au/PANI/p-Si/Al structure has a good rectifying contact and the temperature dependence of IV characteristics of the rectifying contact on p-Si successfully have been explained on the basis of TE mechanism with Gaussian distribution of the barrier heights.  相似文献   

11.
The diffusion of Cu through TaN-based thin layers into a Si substrate has been studied. The barrier efficiency of TaN/Ta/TaN multilayers of 150 nm in thickness has been investigated and is compared with that of TaN single layers. Thermal stabilities of these TaN-based thin layers against Cu diffusion were determined from in situ X-ray diffraction experiments, conducted in the temperature range of 773-973 K. The TaN/Ta/TaN barrier appeared to be more efficient in preventing Cu diffusion than the TaN single layer.  相似文献   

12.
吴锋民  陆杭军  方允樟  黄仕华 《中国物理》2007,16(10):3029-3035
The heteroepitaxial growth of multilayer Cu/Pd(100) thin film via pulse laser deposition (PLD) at room temperature is simulated by using kinetic Monte Carlo (KMC) method with realistic physical parameters. The effects of mass transport between interlayers, edge diffusion of adatoms along the islands and instantaneous deposition are considered in the simulation model. Emphasis is placed on revealing the details of multilayer Cu/Pd(100) thin film growth and estimating the Ehrlich--Schwoebel (ES) barrier. It is shown that the instantaneous deposition in the PLD growth gives rise to the layer-by-layer growth mode, persisting up to about 9 monolayers (ML) of Cu/Pd(100). The ES barriers of The heteroepitaxial growth of multilayer Cu/Pd(100) thin film via pulse laser deposition (PLD) at room temperature is simulated by using kinetic Monte Carlo (KMC) method with realistic physical parameters. The effects of mass transport between interlayers, edge diffusion of adatoms along the islands and instantaneous deposition are considered in the simulation model, Emphasis is placed on revealing the details of multilayer Cu/Pd(100) thin film growth and estimating the Ehrlich-Schwoebel (ES) barrier. It is shown that the instantaneous deposition in the PLD growth gives rise to the layer-by-layer growth mode, persisting up to about 9 monolayers (ML) of Cu/Pd(100). The ES barriers of 0.08 ± 0.01 eV is estimated by comparing the KMC simulation results with the real scanning tunnelling microscopy (STM) measurements,  相似文献   

13.
The electrical properties of the Cu/n-InP and Al/n-InP Schottky barrier diodes (SBDs) with and without the interfacial oxide layer have been investigated by using current-voltage (I-V) measurements. The oxide layer on chemically cleaned indium phosphide (InP) surface has been obtained by exposure to water vapor at 1 ml/min at 200 °C before metal evaporation. The chemical composition of surface oxides grown on the InP is investigated using X-ray photoelectron spectroscopy (XPS). Phosphorus is present as In(PO3)3, InPO4, P2O5 and P4O10. The values of 0.437 ± 0.007 and 0.438 ± 0.003 eV for the barrier height of the reference Cu/n-InP and Al/n-InP SBDs were obtained, respectively. Furthermore, the values of 0.700 ± 0.030 and 0.517 ± 0.023 eV for the barrier height of the oxidized Cu/n-InP and Al/n-InP SBD were obtained, respectively. The transport properties of the metal-semiconductor contacts have been observed to be significantly affected by the presence of the interfacial oxide layer. Devices built on the oxidized surfaces show improved characteristics compared with those built on chemically cleaned surfaces. The chemical reactivity of the metal with oxide and n-InP is important to the formation of the Schottky barriers. The reactive metal Al gave a low barrier height due to the reduction of oxide and reaction with InP. The transmission coefficients for the oxidized Cu/n-InP and Al/n-InP are equal to 2.23 × 10−5 and 4.60 × 10−2, respectively.  相似文献   

14.
Using low-energy electron microscopy, we show that de-wetting of Ag and Cu films on Ru(0 0 0 1) occurs by 3-D islands migrating across step edges in the “downhill” direction. We have observed islands thicken by more than 50 atomic layers in this manner. The island migration allows 3-D growth to occur in a way that avoids the nucleation barrier associated with forming 2-D islands on top of 3-D islands. Indeed, without substrate steps this nucleation barrier is not surmounted, and no 3-D islands are formed in the films studied.  相似文献   

15.
The adsorption and dissociation of dioxygen on Cu steps are studied using periodic self-consistent density functional theory (PW91-GGA) calculations. Cu steps are modeled with a Cu(2 1 1) surface. The results are compared with those on the flat Cu(1 1 1) surface. The adsorption of both atomic and molecular oxygen is enhanced on the stepped surface: the binding energy of atomic oxygen is −4.5 eV at its preferred site on the relaxed Cu(2 1 1) surface vs. −4.3 eV at its preferred site on the relaxed Cu(1 1 1) surface, and the binding energy of the molecular oxygen precursor is increased from ∼−0.6 to ∼−1.0 eV. Several possible O2 dissociation paths at the edge of the Cu(2 1 1) step have been investigated. The activation energies range from 0.09 to 0.24 eV, comparable to a minimum activation energy of 0.20 eV found on Cu(1 1 1). However, compared to Cu(1 1 1) the paths on Cu(2 1 1) are stabilized in their entirety by the step by ∼0.5 eV in terms of initial state, transition state, and final state energies. The dissociation of O2 precursors at the foot of the step is close to being barrier-less. Because of the small dissociation barrier on Cu(1 1 1), the effect of steps on O2 dissociation is nevertheless not expected to be as pronounced as in other gas/metal systems.  相似文献   

16.
The heteroepitaxial growth of hashemite BaCrO4 on barite BaSO4(0 0 1) from supersaturated aqueous solutions was observed in situ using an atomic force microscope (AFM). It was shown that the first hashemite layer grows via two-dimensional nucleation easily forming a complete epitaxial layer, which is likely to have a low level of intrinsic stress. Two-dimensional nucleation of the second and subsequent layers proceeds with significantly lower rates, and growth occurs with lower step velocities. These layers seem to have significant level of intrinsic stress and tend to reduce it via the formation of free surface normal to the growth layer (holes in the layer, dendrite-like shape of nuclei and steps, preferable formation of nuclei at the step edges). As a result, the initially flat surface becomes rough. The process described corresponds to the Stranski-Krastanov epitaxial growth mode, which is well known for growth of semiconductor and metal films but not previously recognised for crystals grown from aqueous solutions.  相似文献   

17.
CO adsorption on Cu(1 1 1) and Cu(0 0 1) surfaces has been studied within ab initio density functional theory (DFT). The structural, vibrational and thermodynamic properties of the adsorbate–substrate complex have been calculated. Calculations within the generalized gradient approximation (GGA) predict adsorption in the threefold hollow on Cu(1 1 1) and in the bridge-site on Cu(0 0 1), instead of on-top as found experimentally. It is demonstrated that the correct site preference is achieved if the underestimation of the HOMO–LUMO gap of CO characteristic for DFT is corrected by applying a molecular DFT + U approach. The DFT + U approach also produces good agreement with the experimentally measured adsorption energies, while introducing only small changes in the calculated geometrical and vibrational properties further improving agreement with experiment which is fair already at the GGA level.  相似文献   

18.
Here we extend a phase-field model for epitaxial step-flow growth originally derived by Liu and Metiu to capture the case of different adatom diffusivities at neighboring terraces as well as an arbitrary Ehrlich-Schwoebel (ES) barrier. Our extended model approach bridges the atomic to continuum scale in the sense that it takes into account atomic attachment kinetics in full detail and likewise allows to simulate long range transport processes above the surface efficiently. To verify the model we present a matched asymptotic analysis of the derived model equations, which shows that in a special limit the presented model can be related to the Burton-Cabrera-Frank (BCF) model with different kinds of attachment coefficients at either side of a step edge. We demonstrate the capability of our approach by presenting numerical simulations with an Ehrlich-Schwoebel (ES) barrier, which reproduce the well-known step meandering instability. Thereby we show how mathematical analysis helps to specify and validate a phase-field model and thus contributes to the further development of this modeling approach at the nano- to microscale.  相似文献   

19.
Ultrathin Mo (5 nm)/MoN (5 nm) bilayer nanostructure has been studied as a diffusion barrier for Cu metallization. The Mo/MoN bilayer was prepared by magnetron sputtering and the thermal stability of this barrier is investigated after annealing the Cu/barrier/Si film stack at different temperatures in vacuum for 10 min. The failure of barrier structure is indicated by the abrupt increase in sheet resistance and the formation of Cu3Si phase proved by X-ray diffraction (XRD) and energy-dispersive X-ray spectroscopy (EDS). High resolution transmission electron microscopy (HRTEM) examination suggested that the ultrathin Mo/MoN barrier is stable and can prevent the diffusion of Cu at least up to 600 °C.  相似文献   

20.
The adsorption behavior and thermal activation of carbon dioxide on the Cu(1 1 1), Cu(1 0 0), and Cu(1 1 0) surfaces have been investigated by means of density functional theory calculations and cluster models and periodic slabs. According to the cluster models, the optimized results indicate that the basis set of C and O atoms has a distinct effect on the adsorption energy, but an indistinct one on the equilibrium geometry. For the CO2/Cu(hkl) adsorption systems studied here, the final structure of adsorbed CO2 is near linear and the preferred modes for the adsorption of CO2 onto the Cu(1 1 1), Cu(1 0 0), and Cu(1 1 0) surfaces are the side-on adsorption at the cross bridge site with an adsorption energy of 13.06 kJ/mol, the side-on adsorption at the short bridge site (13.54 kJ/mol), and the end-on adsorption on the on-top site with C–O bonds located along the short bridge site (26.01 kJ/mol), respectively. However, the calculated adsorption energies from periodic slabs are lower as compared to the experimental data as well as the cluster model data, indicating that the periodic slab approach of generalized gradient approximation in the density function theory may be not suitable to obtain quantitative information on the interaction of CO2 with Cu(hkl) surfaces.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号