首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The results of the quantitative X-ray photoelectron spectroscopy (XPS) and Auger electron spectroscopy (AES) of the interface carbon layer formation on the cleavage surfaces of the layered semiconductor In4Se3 crystals are presented. The carbon coating formation occurs as the result of interaction of the air and residual gases atmosphere in ultra high vacuum (UHV) Auger spectrometer chamber with atomic clean interlayer cleavage surfaces of the crystals. The kinetics and peculiarities of interfacial carbon layer formation on the cleavage surfaces of the crystals, elemental and phase composition of the interface have been studied by quantitative XPS, AES and mass-spectroscopy.  相似文献   

2.
The influence of deposition power and seedlayer on the properties of hard magnet Co50Pt50 was studied. Co50Pt50(/Co90Fe10)/Ru/Co90Fe10 trilayer was used as pining/pinned layer in spin valves. The influences of different hard layer, soft layer and free layer on exchange bias, interlayer coupling, and magnetoresistance (MR) ratio were studied. Weak antiferromagnetic interlayer coupling was obtained by adjusting the thickness of hard and soft layers. MR of a spin valve with structure Cr2/CoFe0.5/CoPt4/CoFe0.5/Ru0.8/CoFe2.2/Cu2.05/CoFe2.6/Cu1.1/Ta1 reached 10.68% (unit in nm), which is comparable to those of IrMn-based synthetic spin valves. The increment of the coercivity of the free layer is mainly due to the static magnetic interaction between the hard layer and the free layer.  相似文献   

3.
An analysis was carried out of the mechanism underlying magnetic interlayer interaction in film structures. The investigation was based on the assumption that interlayer bonding affects film hysteresis. This was based on experimental data on the coercive force, the domain structure parameters, and the microstructure of Fe19Ni81/Cr/Fe19Ni81 and Fe15Co20Ni65/Cr/Fe15Co20Ni65 films. Theoretical estimates show that, as the thickness of the Cr interlayer increases, the exchange interaction between the ferromagnetic layers can be replaced by the magnetostatic interaction whose effectiveness is determined by surface irregularities and layer ‘magnetization ripples’. Fiz. Tverd. Tela (St. Petersburg) 39, 2191–2194 (December 1997)  相似文献   

4.
The magnetic layer structure of TlCo2Se2−xSx has been thoroughly re-investigated with neutron powder diffraction. The cobalt magnetic moments are ferromagnetically arranged within the layers, but the interlayer coupling differs profoundly with varying composition (x): the spins in TlCo2Se2 form a helix along the c-axis with a turning-angle of ∼119° at 1.4 K. This kind of helical structure prevails for 0≤x≤1.5 with a gradual decrease of the angle with increasing sulphur content, down to 34°, showing an almost linear relationship with the interlayer distance of Co-Co. For x≥1.75 the interlayer coupling changes to ferromagnetic. Unexpectedly, two helices were found to coexist at x=0.5 and x=1.0. The interaction between adjacent cobalt layers is there characterized by an incommensurate angle (106°, resp., 73°) together with a commensurate angle of 90°. The magnetic structures have been refined as two magnetic phases, each having a characteristic wave vector. A tentative model where the symmetry of the structure and the interlayer distance compete is considered for explaining the simultaneous occurrence of the two kinds of diffraction profile satellites.  相似文献   

5.
Using van der Waals potential, the relative strengths of interlayer and intralayer bonds have been estimated in the halides of cadmium and lead. The results have been compared with the recent Raman studies of rigid layer modes in MX2-type layer compounds and X-ray diffraction studies of fused cadmium iodide. It is found that the interlayer bond is relatively much weaker than the intralayer bond. Accordingly, it is concluded that in the polytypic MX2-type compounds CdI2, CdBr2 and PbI2, only X-X glide takes place in the polytypic transformations observed during crystal growth and during high temperature treatment of the polytypes. The nature of the X-X glide has been examined in detail.  相似文献   

6.
In this work, the magnetic and transport properties of Fe/SiO2/Ni and Fe/SiO2/Co multilayers grown on Si/SiO2 substrates have been studied. The samples have been prepared by two-stage deposition process. In the first stage, Fe layer and SiO2 interlayer of both samples are grown by ion beam deposition technique at room temperature. Then the samples are taken out to ambient atmosphere and loaded into a pulse laser deposition (PLD) chamber. Prior to the deposition of top layer, the samples are cleaned by annealing at 150 °C. In the second stage, Ni (or Co) layer is prepared by PLD technique at room temperature. The thickness of deposited layers has been measured by Rutherford back scattering (RBS). Magnetic properties of ferromagnetic bilayers have been investigated by room-temperature ferromagnetic resonance (FMR) and vibrating sample magnetometer (VSM) techniques. Standard four-point magneto-transport measurements at various temperatures have been performed. Two-step switching in the in-plane hysteresis loops of Fe/SiO2/Ni and Fe/SiO2/Co samples is observed. A crossing in the middle of hysteresis loops of both samples points to a weak antiferromagnetic interaction between the magnetic layers of the stacks. Saturation magnetization values have been obtained from the VSM measurements of samples with DC magnetic field perpendicular to the films surface. Magneto-transport measurements have shown the predominant contribution of anisotropic magnetic resistance both at room and low temperatures. FMR studies of Fe/SiO2/Ni and Fe/SiO2/Co samples have revealed additional non-uniform (surface and bulk SWR) modes, which behavior has been explained in the framework of the surface inhomogeneity model. An origin of the antiferromagnetic interaction has been discussed.  相似文献   

7.
Shear type rigid layer modes in various polytypes of CdI2 have been measured by Raman scattering. The dispersion curve of transverse acoustic phonons in the [0 0 ξ] direction is estimated from the observed frequencies of the rigid layer modes. The analysis of the estimated dispersion curve indicates that interlayer forces in CdI2 are mainly short range ones.  相似文献   

8.
The quantitative characteristics of the interlayer interaction in multilayer W/B4C periodic compositions produced by magnetron sputtering are studied by small-angle X-ray diffraction using CuK ?? radiation and by electron microscopy of transverse cuts. It is found that approximately 0.85 nm of the tungsten layer thickness is consumed for the formation of mixed zones at layer boundaries. The mixed layers have a density of 13.4 ± 0.7 g/cm3 and contain tungsten in a bound chemical state. The effect of these mixed zones on the X-ray reflectivity of multilayer W/B4C compositions is estimated. A method is proposed to determine the layer thickness at a small number of peaks in an X-ray diffraction pattern.  相似文献   

9.
The properties of top-contact organic thin-film transistors (TC-OTFTs) using ultra-thin 2, 9-dimethyl-4, 7-diphenyl-1, 10-phenanthroline (BCP) as a hole-blocking interlayer have been improved significantly and a BCP interlayer was inserted into the middle of the pentacene active layer. This paper obtains a fire-new transport mode of an OTFT device with double-conductible channels. The accumulation and transfer of the hole carriers are limited by the BCP interlayer in the vertical region of the channel. A huge amount of carriers is located not only at the interface between pentacene and the gate insulator, but also at the two interfaces of pentacene/BCP interlayer and pentacene/gate insulator, respectively. The results suggest that the BCP interlayer may be useful to adjust the hole accumulation and transfer, and can increase the hole mobility and output current of OTFTs. The TC-OTFTs with a BCP interlayer at VDS=-20~V showed excellent hole mobility μFE and threshold voltage VTH of 0.58~cm2/(V\cdots) and --4.6~V, respectively.  相似文献   

10.
Raman spectra of vapor grown PbI2 have been investigated and interpreted based on the assumption that the structure of the samples is 4H polytype. Davydov splitting due to the weak, interlayer van de Waals interaction has been found.  相似文献   

11.
The atomic structure of the {001} surface of Ni3Al has been determined by LEED (low-energy electron diffraction) intensity analysis to correspond to simple truncation of the bulk structure with the Ni-Al mixed layer on top rather than the pure Ni layer. The first interlayer spacing is essentially equal to the bulk interlayer spacing between {001} planes. First-principles calculations of the cohesive energies of slabs terminating in the two types of layers also indicate that the mixed layer termination is more stable.  相似文献   

12.
H. Manaka  M. Nishi  I. Yamada 《高压研究》2013,33(3-6):187-192
Abstract

The two-dimensional Heisenberg antiferromagnet (C2H5NH3)2CuCl4 has the ferromagnetic intralayer exchange interaction, while the extremely weak interlayer exchange interaction is antiferromagnetic. Neutron scattering experiments under high pressures have been performed on this compound. We confirm that the spin structure changes around 1~2 GPa from the collinear alignment along the a-axis to a spin-canting one. The weak moment due to the canting is parallel to the c-axis. The results indicate that the ferromagnetic intralayer and the antiferromagnetic interlayer exchange interactions are maintained up to 1~2 GPa. Why the weak ferromagnetic moment along the c-axis occurs is due to a lowering of crystal symmetry by pressure.  相似文献   

13.
Lattice vibrations in 2H-TaSe2 have been reinvestigated by Raman scattering in view of the recent orthorhombic structure of the commensurate charge density wave (CCDW) phase. The renormalization of six charge density waves on two layers gives four Ag modes and two B1g modes in the orthorhombic CCDW phase, in place of two A1g modes and two E2g modes in the hexagonal CCDW phase which had been believed. The splitting of the E2g modes to the Ag and B1g modes in the orthorhombic symmetry depends on the interlayer interaction. The observed small splitting less than 3 cm-1 shows the weak interlayer interaction. The energies of the four Ag modes and the two B1g modes are presented as a function of temperature.  相似文献   

14.
Two-dimensional (2D) layered materials have been attracted tremendous research interest because of their novel photoelectric properties. If a single atomic layer instead of individual atoms is taken as a rigid motion object, two unique interlayer vibrations, i.e. compression/breathing and shear motions, at ultra-low frequencies can be expected and actually have been observed in many layered materials. The vibrations stem from the interlayer van der Waals interaction and can be well described by a conventional linear-chain model in most cases. The vibration frequencies strongly depend on layer thickness, which enables an accurate determination of layer numbers. A quick and nondestructive determination of flake thickness is particularly important for the materials, since the physical properties can be dramatically changed in the cases of several atomic layers. As a measure of interlayer coupling, the low-frequency modes are also sensitive to the stacking methods of atomic layers and the overlapping of different kinds of 2D materials. This allows the modes to play a key role in the applications like van der Waals heterojunctions. In this paper, we will give a brief review on the experimental observations and theoretical understanding of the interlayer modes in several typical 2D systems, as well as their actual and potential applications.  相似文献   

15.
Density functional theory within general gradient approximation (GGA) has been used to investigate sub-monolayer carbon atom adsorbed on Fe(100) as a function of coverage. The carbon atoms prefer to adsorb in the fourfold hollow site and bind strongly with the Fe surfaces. There is a substantial and strong coverage dependence of the carbon-induced expansion of the first interlayer spacing, reflecting a weakening of Fe–Fe bonds between the two outermost substrate layers. Some charge is found to transfer from substrate Fe to the adsorbate C atoms, which is responsible for the increase of work function. The density of states (DOS) analysis indicates the bonding of carbon with the first surface layer Fe atoms is primarily due to the interaction between Fe 3dx2-y2, xy and C 2px, y orbitals, and the bonding of carbon with the second surface layer Fe atom that sits directly below the carbon atom is mainly from interaction between the minority spin Fe 3dz2 and C 2pz orbitals.  相似文献   

16.
In this contribution, we present results of a non-destructive in-depth analysis of concentration of chemical components at buried interfaces on Ge-based CMOS by means of hard X-ray photoelectron spectroscopy (HAXPES) and low angle X-ray reflectivity (XRR). Two samples composed of a Ge/Si/SiO2/HfO2/TiN stack, with layer and interlayer thicknesses of 2500, 0.9, 0.5, 4.9, 3.4 nm and 2500, 0.7, 1, 5.8, 3 nm have been studied. The use of electrons with kinetic energies from few eV up to 15 keV enables to tune the information depth being able to analyze the desired interface in a non-destructive way. XRR enables the determination of the exact layer thickness and density. The results suggest that the Si interlayer prevents the Ge oxidation. Depth profiles of the electronic structure have been obtained for both samples by following the evolution of the photoemission signal from the Hf 2p3/2 core level as a function of the photoelectron kinetic energy. The depth profile of the electronic structure reveals the presence of a chemical shift of the Hf 2p3/2 core level, which is related to an interfacial bonding state. Our results demonstrate the excellent capability of HAXPES to study buried interfaces in a non-destructive way.  相似文献   

17.
We investigate thermally activated domain wall creep in a system consisting of two ultrathin Co layers with perpendicular anisotropy coupled antiferromagnetically through a 4 nm thick Pt spacer layer. The field driven dynamics of domain walls in the softer Co layer have been measured while keeping the harder Co layer negatively saturated. The effect of the interlayer interaction on the soft layer is interpreted in terms of an effective coupling field, HJHJ, which results in an asymmetry between the domain wall speeds measured under positive and negative driving fields. We show that creep theory remains valid to describe the observed wall motion when the effective coupling field is included in the creep velocity law as a component of the total field acting on the wall. Using the resultant modified creep expression, we determine a value for the effective coupling field which is consistent with that measured from the shift of the soft layer's minor hysteresis loop. The net antiferromagnetic coupling is attributed to a combination of RKKY and orange-peel coupling.  相似文献   

18.
By using an extended linear-chain model which includes the interlayer forces, we have calculated the new vibrational modes, of Li intercalated InSe. The dispersion curves along thek z wavevector perpendicular to the layers for the -polytype are determined in the first Brillouin zone. Assuming that the interlayer interaction is not modified upon intercalation and the interaction between lithium atom and adjacent layers in the van der Waals plane has the same value than the interlayer one, the new modes are determined with the force constant given by the rigid layer mode of the, -polytype at 18 cm–1. This model gives the variation of the acoustic branches and the appearance of two optical intercalation modes at higher frequencies. The Brillouin zone boundary modes of the acoustic branches at 18 and 41 cm–1 in the pure material are calculated to be 22 and 50 cm–1 respectively forx=1/2. The dispersion of the new optical branches is flat along thez-direction and frequencies are obtained at 96 cm–1 for the Li mode perpendicular tok z and at 218 cm–1 for the Li mode parallel tok z. We compare also our results with the Li mode frequencies obtained in a total energy calculation. Raman scattering experiments have been performed in intercalated sample in order to verify the proposed model.  相似文献   

19.
Three-layer magnetic film systems Fe/Si/Fe have been studied by the method of magnetic resonance. It is established that the ferromagnetic layer thickness affects the magnitude of the interlayer exchange interaction in this system. A mechanism explaining the observed effect is proposed.  相似文献   

20.
The presence of a buried, ultra-thin amorphous interlayer in the interface of room temperature deposited Ni film with a crystalline Si(100) substrate has been observed using cross sectional transmission electron microscopy (XTEM). The electron density of the interlayer silicide is found to be 2.02 e/?3 by specular X-ray reflectivity (XRR) measurements. X-ray diffraction (XRD) is used to investigate the growth of deposited Ni film on the buried ultra-thin silicide layer. The Ni film is found to be highly textured in an Ni(111) plane. The enthalpy of formation of the Ni/Si system is calculated using Miedema’s model to explain the role of amorphous interlayer silicide on the growth of textured Ni film. The local temperature of the interlayer silicide is calculated using enthalpy of formation and the average heat capacity of Ni and Si. The local temperature is around 1042 K if the interlayer compound is Ni3Si and the local temperature is 1389 K if the interlayer compound is Ni2Si. The surface mobility of the further deposited Ni atoms is enhanced due to the local temperature rise of the amorphous interlayer and produced highly textured Ni film. Received: 2 March 2000 / Accepted: 28 March 2000 / Published online: 11 May 2000  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号