首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
本文报道非晶态Fe13Ni67.2P4.5B15.3合金的磁化强度与温度和磁场关系的测量结果。在居里温度附近样品的磁特性符合二级相变规律,得到临界指数β=0.39±0.02,γ=1.56±0.06,δ=5.20±0.1,样品的居里温度Tc=(180.4±0.2)K。在实验误差范围内,临界指数β,γ,δ满足γ=β(δ-1)关系,在168—192K温度范围,实验数据满足二级相变的磁状态方程。当T>270K时,样品顺磁磁化率服从居里-外斯定律,由居里-外斯常数c计算出有效顺磁磁矩Peff=3.19 μB关键词:  相似文献   

3.
Low-field magnetic susceptibility and the magnetic field dependence of magnetization of Metglas 2605 A (Fe78Mo2B20) were studied between 300 and 600 K and in fields up to 10kG. It is shown here that for an amorphous ferromagnetic alloy, the various methods of determination of Curie temperature Tc give the same value, which in this case is (564 ± 1) K. The critical exponent γ is 1.7 ± 0.1. Our low-field susceptibility measurements on Metglas 2605 (Fe80B20) gives a Tc of (634 ± 3) K while the reported high-field method value is 647 K. These results are discussed in terms of crystallization temperatures.  相似文献   

4.
Magnetization and susceptibility were investigated as a function of temperature and magnetic field in polycrystalline Mn[Cr0.5Ga1.5]S4 spinel. The dc susceptibility measurements at 919 Oe showed a disordered ferrimagnetic behaviour with a Curie-Weiss temperature θCW=−55 K and an effective magnetic moment of 5.96 μB close to the spin-only value of 6.52 μB for Cr3+ and Mn2+ ions in the 3d3 and 3d5 configurations, respectively. The magnetization measured at 100 Oe revealed the multiple magnetic transitions with a sharp maximum at the Néel temperature TN=3.9 K, a minimum at the Yafet-Kittel temperature TYK=5 K, a broad maximum at the freezing temperature Tf=7.9 K, and an inflection point at the Curie temperature TC=48 K indicating a transition to paramagnetic phase. A large splitting between the zero-field-cooled (ZFC) and field-cooled (FC) magnetizations at a temperature smaller than TC suggests the presence of spin-glass-like behaviour. This behaviour is considered in a framework of competing interactions between the antiferromagnetic ordering of the A(Mn) sublattice and the ferromagnetic ordering of the B(Cr) sublattice.  相似文献   

5.
An ordered state with a complex magnetic structure has been observed below 4CK. The magnetization for H ⊥ c (c; the c-axis) shows a field-induced phase transition from a small magnetic moment state ( ~ 0.6μB) at lower fields to a larger moment one ( 2.2 - 2.5μB) above 25kG. The transition field depends on temperature and is found to be 5 - 2kG. The magnetization for H//c has only a sublinear field dependence. Above 40K the magnetic susceptibility obeys the Curie-Weiss law with θ = +1.3K and the molar Curie constant Cm = 6.78, which suggests that Eu ion is divalent in C6Eu.  相似文献   

6.
Using powder neutron diffraction techniques, we have examined the magnetic order of the pseudoternary compound Ho(Rh0.3Ir0.7)4B4 below the Néel temperature TN=2.7K. The magnetic structure consists of stacked antiferromagnetic basal plane sheets forming a body centered tetragonal unit cell, with a sublattice magnetization corresponding to 9.6±0.6μB per Ho3+ion at 1.5 K. Magnetic intensity versus temperature measurements indicate that the transition is second order and reveal no anomalous effects when the compound becomes superconducting at Tc=1.34K.  相似文献   

7.
The compounds CeOs3B2 and CeRu3B2 show superconductivity with Tc's of 3.5 and 1.1 K respectively. The magnetic susceptibility of both these compounds may be described as the sum of a Curie-Weiss term dominating at low temperature and a large temperature independent term. The heat capacity measurements yield the value of electronic specific heat coefficient γ of 40.1 and 15.6 mJ/mol K2 for Os and Ru compounds, respectively. These compounds appear to be conventional bulk superconductors in which Ce is in a strongly mixed valent state.  相似文献   

8.
The complex ac dynamic magnetic susceptibility was used to study the influence of temperature on critical fields in polycrystalline ZnCr2Se4 spinel. An antiferromagnetic order with a Néel temperature TN=20.7 K and a strong ferromagnetic exchange evidenced by a positive Curie-Weiss temperature θCW=55.1 K were established. An increasing static magnetic field shifts TN to lower temperatures while a susceptibility peak at Tm in the paramagnetic region—to higher temperatures. The non-zero and negative values both of the second and third harmonics of susceptibility suggest only a parallel spin coupling in ferromagnetic clusters in the range between the Néel and Curie-Weiss temperatures. Below TN the magnetic field dependence of susceptibility, χac(H), shows two peaks at critical fields Hc1 and Hc2. The values of Hc1 decrease slightly with temperature while the values of Hc2 drop rapidly with temperature. The strong changes of Hc2 temperature induced are mainly responsible for a spin frustration of the re-entrant type in the spinel under study.  相似文献   

9.
The magnetic behavior of the diluted magnetic semiconductor Cd0.42Mn0.58In2S4 has been study by dc magnetization and ac susceptibility experiments. Zero field cooled and field cooled measurements reveal irreversibility below Tirr=2.60±0.15 K. Ac susceptibility data, performed as a function of the temperature and the frequency, confirm the spin-glass like behavior of the material with Tf=2.75±0.15 K. High temperature susceptibility data follow a typical Curie-Weiss law with θ=−74±1 K which suggests predominant antiferromagnetic interactions. The randomness of the magnetic ions, necessary to explain the magnetic behavior of the material, has been determined by X-ray powder diffraction experiments.  相似文献   

10.
Low temperature heat capacity and magnetization measurements are reported for the Al80Mn20 alloy in the quasicrystalline icosahedral phase. The heat capacity, which was measured for temperatures ranging from 0.5 to 5.0 K and magnetic fields up to 11.7 kOe, shows a broad magnetic contribution around 1.0 K. The linear electronic contribution does not indicate an anomalously high density-of-states at the Fermi energy as predicted theoretically for quasicrystalline systems. The d.c. magnetization, which was measured from 2.0 to 300 K and with magnetic fields up to 50 kOe, indicates an effective number of one 11 μB localized magnetic moment for approximately every 100 Mn atoms. The low field susceptibility follows the Curie-Weiss law for temperatures ≧ 10 K, while a spin-glass-like ordering is observed at low temperatures.  相似文献   

11.
We have performed 169Tm and 161Dy Mössbauer spectroscopy on TmFe4Al8 and DyFe4Al8. From the temperature dependence of the electric quadrupole splitting of the 169Tm spectra of TmFe4Al8 we have determined the second order crystal field potential V02 = (100 ± 10) K and the exchange field term gJμBHM = (1 ± 1) K. The temperature dependence of the hyperfine field of the 161Dy spectrum of DyFe4Al8 gives gJμBHM = (15 ± 3) K. With these exchange fields magnetic transition temperatures of the rare earth sublattices were found, which are consistent with experiment. The relaxation behaviour of the Tm sublattice below TN = 187 K is discussed.  相似文献   

12.
We report the theoretical interpretation of the magnetization and the magnetocrystalline anisotropy of ferromagnetic DyAl2 single crystals between 4.2 and 60 K and magnetic fields up to 15 T. Good agreement between theory and experiment is obtained by using three temperature independent parameters: the two crystal field parameters B4 = (?0.50 ± 0.05) × 10?4 meV, B6 = ? (0.51 ± 0.05) × 10?6 meV and the Curie temperature Tc = (62 ± 2) K.  相似文献   

13.
Magnetization and susceptibility data on PrCo2 and PrCo2H4 are presented. The ac susceptibility of PrCo2 measured in zero dc field displays a sharp and high peak at Tc = (39.9 ± 0.2) K. The magnetization versus temperature curves show ferromagnetic behaviour for B >1 T, but display a maximum at lower values of the applied field. These results, together with the behaviour of the hysteresis loops at different temperatures below Tc, indicate that PrCo2 orders ferromagnetically, the magnetic hardness increasing strongly for T → 0. The saturation moment at 4.2 K equals 3.9 μB per formula unit, as found from the magnetization curve measured in a pulsed-field magnet up to B = 30 T.Similar experiments on PrCo2H4 provide evidence that the introduction of hydrogen in PrCo2 not only destroys the long-range atomic order, but also considerably reduces the ferromagnetic interactions. Such an effect of the hydrogen is commonly observed in cobalt intermetallics. Part of the PrCo2H4 is found to have decomposed into PrH2 and free Co. The clusters of free Co atoms give rise to a maximum in the zero-field ac susceptibility versus temperature curves, similar as observed in spin glasses or magnetic glasses. By increasing the ac frequency, the maximum shifts to higher temperatures. The behavior can be explained in terms of the Néel model for superparamagnetic particles with randomly oriented local anisotropy axes.  相似文献   

14.
The specific heat of HoCo2 has been measured between 1.3 and 5K, a temperature range in which the nuclear specific heat predominates. The magnetic moment of holmium determined from the data is (10 ± 0.2)μB. This value is compared with the values deduced from magnetization and elastic neutron scattering experiments.  相似文献   

15.
Temperature dependences of heat capacity CP(T) and magnetization M(T) of an icosahedral dysprosium boride (DyB62) single crystal have been experimentally investigated in the temperature range of 2-300 K. The magnetic susceptibility χ(T) of DyB62 follows Curie-Weiss law with a paramagnetic Curie temperature of −3.7 K, which implies that the antiferromagnetic interactions are dominant in this material and suggests the possibility of magnetic ordering at low temperatures. This conjecture is supported by the temperature dependence of heat capacity CP(T), which decreases upon heating from 2 to 7 K. The heat capacity of DyB62 at 2 K is analyzed as a sum of magnetic, Debye, two-level system and soft atomic potential components.  相似文献   

16.
The specific heat of single crystalline HoAl2 in magnetic fields up to 7.5 T has been measured for the temperature range 1.5–16 K. In addition the energy of a magnetic excitation in a magnetic field of 5 T at 4.2 K has been determined by inelastic neutron scattering. The results have been interpreted with a cubic crystalline electric field and an exchange interaction using the same parameter set B4=-0.85×10-4 meV, B6=+0.71× 10-6 meV and TC=31.5 K previously obtained by magnetization measurements.  相似文献   

17.
The compound ErCu2Ge2 was studied by neutron diffraction. The diffraction diagram of this compound at 170 K agrees with its crystallographic structure. Its diagram at 1.9 K reveals the existence of superlattice lines consistent with a cell doubled in the a and c directions. The erbium magnetic moment (8.0±0.4)μB lies on the c-axis. Crystal field calculations on the Er3+ site give 7.9μB, with easy magnetization axis the c-axis of the crystal. Copper must contribute to the Vml crystal field parameters with a charge equal to 0.6+.  相似文献   

18.
Nanocomposite made of 10 wt% of Co2.4Al0.6O4 particles dispersed in an amorphous SiO2 matrix has been synthesized by a sol-gel method. X-ray diffraction, transmission electron microscopy and magnetic measurements have been used to characterize the properties of nanocomposite. Most of the particles are well crystallized and have an average diameter below 100 nm. Smaller particles with size below 10 nm have also been observed. A large value of the effective magnetic moment per Co2+ ion of 5.08 μB and negative and the low Curie-Weiss paramagnetic temperature Θ∼−6 K, obtained from the high-temperature susceptibility data, indicate a possible mixing of Co2+ and Co3+ ions between tetrahedral and octahedral sites of the spinel crystal lattice. The measurements of static and dynamic magnetic susceptibilities have shown that Co2.4Al0.6O4 particles in SiO2 matrix display a spin glass behavior at low temperatures.  相似文献   

19.
Antiferromagnetic phase transition in two vanadium garnets AgCa2Co2V3O12 and AgCa2Ni2V3O12 has been found and investigated extensively. The heat capacity exhibits sharp peak due to the antiferromagnetic order with the Néel temperature TN=6.39 K for AgCa2Co2V3O12 and 7.21 K for AgCa2Ni2V3O12, respectively. The magnetic susceptibilities exhibit broad maximum, and these TN correspond to the inflection points of the magnetic susceptibility χ a little lower than T(χmax). The magnetic entropy changes from zero to 20 K per mol Co2+ and Ni2+ ions are 5.31 J K−1 mol-Co2+-ion−1 and 6.85 J K−1 mol-Ni2+-ion−1, indicating S=1/2 for Co2+ ion and S=1 for Ni2+ ion. The magnetic susceptibility of AgCa2Ni2V3O12 shows the Curie-Weiss behavior between 20 and 350 K with the effective magnetic moment μeff=3.23 μB Ni2+-ion−1 and the Weiss constant θ=−16.4 K (antiferromagnetic sign). Nevertheless, the simple Curie-Weiss law cannot be applicable for AgCa2Co2V3O12. The complex temperature dependence of magnetic susceptibility has been interpreted within the framework of Tanabe-Sugano energy diagram, which is analyzed on the basis of crystalline electric field. The ground state is the spin doublet state 2E(t26e) and the first excited state is spin quartet state 4T1(t25e2) which locates extremely close to the ground state. The low spin state S=1/2 for Co2+ ion is verified experimentally at least below 20 K which is in agreement with the result of the heat capacity.  相似文献   

20.
王泽温  介万奇 《物理学报》2007,56(2):1141-1145
利用MPMS-7(magnetic property measurement system)型超导量子磁强计对垂直布里奇曼法生长的Hg0.89Mn0.11Te晶片磁化强度变化规律进行了测量.试验采用了两种不同的外场和冷却条件.首先在5 K恒温下,-5200到5200 kA/m范围内改变磁场强度进行了测定.然后维持800 kA/m恒定磁场,分别在有场冷却和无场冷却条件下,从5到300 K范围内改变温度,研究了变温条件下的磁化特性.并采用分子场近似模型,用类布里渊函数,最小二乘法对磁化强度随磁场强度变化的实验结果进行拟合和分析,结果表明,Mn2+离子之间存在反铁磁相互作用.磁化率和温度关系分析表明:在测试范围内Hg0.89Mn0.11Te是单一的顺磁相,在高温区磁化率和温度服从居里-万斯定律,呈线性关系,低于40 K时,磁化率和温度的关系偏离居里-万斯定律,表现出顺磁增强现象. 关键词: 0.89Mn0.11Te')" href="#">Hg0.89Mn0.11Te 磁化强度 磁化率 类布里渊函数  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号