共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
The fine structure of the Fabry–Perot interference as well as the interference of ordinary and extraordinary waves is investigated in ZnAs2 crystals. ε1, ε2, n and k optical constants are calculated in a wide spectral range of 0.4–12 eV. The anisotropy of electronic transitions at the minimum energetic interval of the band structure is investigated. The interband energetic intervals are determined deep into the absorption band. The observed transitions are discussed taking into account the available data from the band structure calculations. 相似文献
3.
4.
The energy band structure of mechanically free and compressed LiRbSO4 single crystals is investigated. It is established that the top of the valence band is located at the D point of the Brillouin zone [k = (0.5, 0.5, 0)], the bottom of the conduction band lies at the Γ point, and the minimum direct band gap E g is equal to 5.20 eV. The bottom of the conduction band is predominantly formed by the Li s, Li p, Rb s, and Rb p states hybridized with the S p and O p antibonding states. The pressure coefficients corresponding to the energies of the valence and conduction band states and the band gap E g are determined, and the pressure dependences of the refractive indices n i are analyzed. 相似文献
5.
6.
The tunable two-dimensional photonic crystals band gap, absolute photonic band gap and semi-Dirac point are beneficial to designing the novel optical devices. In this paper, tunable photonic band gaps structure was realized by a new type two-dimensional function photonic crystals, which dielectric constants of medium columns are functions of space coordinates. However for the two-dimensional conventional photonic crystals the dielectric constant does not change with space coordinates. As the parameter adjustment, we found that the photonic band gaps structures are dielectric constant function coefficient, medium columns radius, dielectric constant function form period number and pump light intensity dependent, namely, the photonic band gaps position and width can be tuned. we also obtained absolute photonic band gaps and semi-Dirac point in the photonic band gaps structures of two-dimensional function photonic crystals. These results provide an important theoretical foundation for design novel optical devices. 相似文献
7.
The band structure and optical properties of the CdSexTe1−x ternary mixed crystals have been studied using the pseudopotential formalism under an improved virtual crystal approximation approach. Quantities such as, energy gaps, band-gap bowing parameters, electron effective mass and dielectric constants are calculated. Our results agree well with the available data in the literature. The composition dependence of all studied quantities has been expressed by quadratic polynomial forms. 相似文献
8.
9.
We have studied the band structure and optical properties of 4H-SiC by using a full potential linearized augmented plane waves (FPLAPW) method. The density of states (DOS) and band structure are presented. The imaginary part of the dielectric function has been obtained directly from the band structure calculation. With band gap correction, the real part of the dielectric function has been derived from the imaginary part by the Kramers-Kronig (KK) dispersion relationship. The values of reflectivity for normal incidence as a function of photon energy have also been calculated. We found the theoretical results are in good agreement with the experimental data. 相似文献
10.
The ab initio calculations are carried out to investigate the effect of hydrogen, oxygen and nitrogen terminations on the properties of the band edge and the values of the band-gap, as well as the oscillator strength of the silicon nanonets (SiNNs). The oxygen functional groups are found to effectively preserve the direct band-gap nature of the SiNNs, and even change the luminescence properties of the silicon nanowires (SiNWs) to the direct band-gap transition. The appreciable oscillator strength of the first direct transition is obtained for the oxygen terminated nanostructure. The study on the electronic states indicates that the variation of the band edge caused by the surface terminations is attributed to the change of the state compositions. These surface modifications are thought to be useful for silicon band-gap engineering in the area of optoelectronics. 相似文献
11.
12.
Hai Jun Xu De Yao Li Xin Jian Li 《Physica E: Low-dimensional Systems and Nanostructures》2009,41(10):1882-1885
Silicon nanoporous pillar array (Si-NPA) is fabricated by hydrothermally etching single crystal silicon (c-Si) wafers in hydrofluoric acid containing ferric nitrate. Microstructure studies disclosed that it is a typical micron/nanometer structural composite system with clear hierarchical structures. The optical parameters of Si-NPA were calculated by general light-absorption theory and Kramers–Kronig relations based on the experimental data of reflectance and the variations compared with the counterparts of c-Si were analyzed. The features of the electronic band structure deduced from the optical measurements strongly indicate that Si-NPA material is a direct-band-gap semiconductor and possesses separated conduction sub-bands which accords with conduction band splitting caused by silicon nanocrystallites several nanometers in size. All these electronic and optical results are due to the quantum confinement effect of the carriers in silicon nanocrystallites. 相似文献
13.
Ch. Bheema Lingam K. Ramesh Babu Surya P. Tewari G. Vaitheeswaran S. Lebègue 《固体物理学:研究快报》2011,5(1):10-12
The quasiparticle band structure of the low temperature orthorhombic phase of NH3BH3 is studied by using the GW approximation. It is found that NH3BH3 is an insulator with a value of the band gap of 5.90 eV with GGA and of 9.60 eV with the GW approximation. Then, the optical properties of NH3BH3 are obtained by the calculation of the dielectric function, corrected by a scissor shift operation corresponding to the GW correction on the band gap. Also, the optical anisotropy in NH3BH3 is analyzed through the refractive index and static dielectric constants along the different crystallographic directions. Finally, it is found that the energy loss function has a prominent peak at 22.26 eV; at these frequencies (above 22.26 eV) NH3BH3 becomes transparent. (© 2011 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim) 相似文献
14.
15.
16.
采用密度泛函理论,赝势平面波方法计算了金属铀a相的晶体结构,弹性常数,体模量,电子能带结构和光学常数(折射率n和消光系数k)等.其中,铀的晶格参数,弹性常数和体模量等与实验及其它第一性原理计算结果十分吻合.计算得到了铀的光学常数,与实验结果作了对比并进行了分析说明. 相似文献
17.
18.
19.
R.K. Singh Shankar P. Sanyal J.K. Nayak 《Journal of Physics and Chemistry of Solids》1982,43(1):21-24
An interionic potential model has been proposed to study the static and elastic properties of mixed diatomic crystals. The interaction system of this potential consists of the long-range Coulomb and three-body interaction and the short-range overlap repulsion. This potential has been used to calculate the cohesive energy, phase-transition pressure and volume, third-order elastic constants and pressure derivatives of the effective second-order elastic constants for NaCl-NaBr mixed crystals. These results agree reasonably well with the available experimental results on the host crystals and allow us to draw some meaningful conclusions for the mixed alkali halide crystals. 相似文献
20.
The energy band structure of spin-1 condensates with repulsive spin-independent and either ferromagnetic or antiferromagnetic spin-dependent interactions in one-dimensional (1D) periodic optical lattices is discussed. Within the two-mode approximation, Bloch bands of spin-1 condensates are presented. The results show that the Bloch bands exhibit a complex structure as the atom density of m F=0 hyperfine state increases: bands splitting, reversion, intersection and loop structure are excited subsequently. The complex band structure should be related to the tunneling and spin-mixing dynamics. 相似文献