首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Different types of industrially produced titanium dioxide nanoparticles and a precipitated titanium dioxide have been dissolved in aqueous NaCl solutions at temperatures of 25 and 37 degrees C. The titanium concentration in solution with regard to dependence on time has been determined up to 3000 h after starting the dissolution experiment. The effect of particle size, pH value, temperature, background electrolyte concentration, and mass concentration of titanium dioxide exposed to the liquid phase has been studied. The nanoparticles have been characterized by N2 physisorption measurements and XRD. The total dissolved titanium in solution has been determined by adsorptive stripping voltammetry (AdSV) and inductively coupled plasma mass spectrometry (ICP-MS). A new kinetic size effect has been observed. It turns out that this effect can be explained by applying an already existing phenomenological thermodynamic and kinetic model. The model describes all possible phenomena in a colloidal dispersion, nucleation, growth of particles, Ostwald ripening, and dissolution of particles using a uniform concept.  相似文献   

2.
We present a new model for thermal diffusion, and we compare its results for both simple and real systems. This model is derived from a kinetic approach with explicit mass and chemical contributions. It involves self-diffusion activation free energies, following Prigogine's original approach. We performed, furthermore, both equilibrium and nonequilibrium molecular dynamics evaluations in order to compute respectively the self-diffusion activation free enthalpies and the Soret coefficient when no experimental data were available. Our model is in very good agreement with simulation data on Lennard-Jones mixtures, and a good behavior is noted for the water-ethanol mixture, where the composition dependence at which the Soret coefficient changes its sign is predicted very accurately. Finally, we propose a new water-ethanol experiment at higher temperature in order to check the validity of our model.  相似文献   

3.
A survey of the literature dealing with the kinetics of epoxy/anhydride polymerizations initiated by tertiary amines, shows inconsistencies in results reported by several authors. Both first-order and autocatalytic expressions have been used to fit experimental results. In the former case, significantly different values of apparent activation energies were found in isothermal and nonisothermal experiments. A simple kinetic model is proposed to explain these inconsistencies, based on the following steps: (a) a reversible reaction transforming an inactive initiator species into an active one, (b) a propagation step, and (c) a chain transfer step regenerating the active initiator (step not relevant to the kinetic analysis). The simple model explains both the first-order and autocatalytic behaviors reported in the literature. It also leads to the experimental values of the apparent activation energies obtained under different conditions. It is also shown that isoconversional methods should not be applied to obtain fundamental kinetic parameters in systems where the reaction rate depends on the concentration of an active species that varies independently of the conversion of functional groups. © 1999 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 37: 2799–2805, 1999  相似文献   

4.
Kinetics of an association and dissociation of single elements with the effects of translational and rotational diffusion and angular limitations is discussed. Separated clusters embedded in a solution of orientable single elements are considered.Steady-state positional and angular distribution of single elements is calculated from the equation of translational-rotational diffusion and the boundary conditions proposed for orientation-limited association. Although spherical orientable elements are assumed, the model can be used for non-spherical particles with aspect ratios close to unity.Diffusion-limited rate constants of association and dissociation are proposed which depend on translational and rotational diffusion constants of single elements, the tolerance angle of the association, and the cluster size.Effective concentration of single elements and effective rate constants are expressed by the equilibrium and diffusion-limited rate constants. Effects of finite diffusion rates and finite tolerance angle are discussed.The equations of the kinetic model of nucleation are modified due to the diffusion-limited rate of the association.  相似文献   

5.
A method for the calculation of fixed catalyst bed reactors by using a diffusion kinetic model is suggested. Correlation between calculated curves for the time distribution of the reaction mixture composition and experimental data is given.
=qo . .
  相似文献   

6.
The self- and collective-diffusion behaviors of adsorbed methane, helium, and isobutane in zeolite frameworks LTA, MFI, AFI, and SAS were examined at various concentrations using a range of molecular simulation techniques including Molecular Dynamics (MD), Monte Carlo (MC), Bennett-Chandler (BC), and kinetic Monte Carlo (kMC). This paper has three main results. (1) A novel model for the process of adsorbate movement between two large cages was created, allowing the formulation of a mixing rule for the re-crossing coefficient between two cages of unequal loading. The predictions from this mixing rule were found to agree quantitatively with explicit simulations. (2) A new approach to the dynamically corrected Transition State Theory method to analytically calculate self-diffusion properties was developed, explicitly accounting for nanoscale fluctuations in concentration. This approach was demonstrated to quantitatively agree with previous methods, but is uniquely suited to be adapted to a kMC simulation that can simulate the collective-diffusion behavior. (3) While at low and moderate loadings the self- and collective-diffusion behaviors in LTA are observed to coincide, at higher concentrations they diverge. A change in the adsorbate packing scheme was shown to cause this divergence, a trait which is replicated in a kMC simulation that explicitly models this behavior. These phenomena were further investigated for isobutane in zeolite MFI, where MD results showed a separation in self- and collective- diffusion behavior that was reproduced with kMC simulations.  相似文献   

7.
The design of efficient systems for the targeted delivery of nucleic acids into cells is a rapidly developing area of polymer chemistry, molecular biology, and medicine. Complexes between DNA or RNA polyanions and various polycations, which are usually called polyplexes, hold promise as such delivery systems. Polyethylenimines (PEIs) and their derivatives are often used in research for the preparation of such complexes with plasmid DNA, oligonucleotides, and small RNA. Polyplex nanoparticles are employed for the delivery of genetic material into cells in culture and for the development of methods for the treatment of genetic and cancer diseases. The properties of polyplexes depend on the size, dispersity, and hydrophilicity of the used PEI or its derivatives and the ratio of polymers in the complex, which are responsible for the size, surface charge, and hydrophilicity of the resulting nanoparticles. The efficiency of polyplexes is determined by their ability to interact with components of biological systems on the surface and inside the cells, as well as with the blood vascular walls and the extracellular matrix during systemic in vivo use.  相似文献   

8.
To improve design processes in the field of nanomedicine, in vitro characterization of nanoparticles with systematically varied properties is of great importance. In this study, surface sensitive analytical techniques were used to evaluate the responsiveness of nano-sized drug-loaded polyelectrolyte complexes when adsorbed to model lipid membranes. Two bioreducible poly(amidoamine)s (PAAs) containing multiple disulfide linkages in the polymer backbone (SS-PAAs) were synthesized and used to form three types of nanocomplexes by self-assembly with human insulin, used as a negatively charged model protein at neutral pH. The resulting nanoparticles collapsed on top of negatively charged model membranes upon adsorption, without disrupting the membrane integrity. These structural rearrangements may occur at a cell surface which would prevent uptake of intact nanoparticles. By the addition of glutathione, the disulfide linkages in the polymer backbone of the SS-PAAs were reduced, resulting in fragmentation of the polymer and dissociation of the adsorbed nanoparticles from the membrane. A decrease in ambient pH also resulted in destabilization of the nanoparticles and desorption from the membrane. These mimics of intracellular environments suggest dissociation of the drug formulation, a process that releases the protein drug load, when the nanocomplexes reaches the interior of a cell.  相似文献   

9.
Magnetic anion exchange resin(MD-1) was prepared from quaternization of magnetic copolymeric resin(glycidyl methacrylate -eo-divinylbenzene).For comparison,magnetic resin MD-0 without quaternization and non-magnetic resin(D-1) were also synthesized for the adsorption process.It was found that the adsorption was mainly contributed to the chemical interaction between quaternary ammonium groups and reactive blue RXHC.Due to the smaller size,MD-1 had faster adsorption and desorption kinetics than D-1.Coupled with the advantage of easy separation,the magnetic anion exchange resin was considered to be superior to common anion exchange resin in removal of reactive dye.  相似文献   

10.
11.
Novel water-soluble dendritic-linear-brush-like triblock copolymer polyamidoamine-b-poly(2-(dimethylamino)ethyl methacrylate)-b-poly(poly(ethylene glycol) methyl ether methacrylate) (PAMAM-b-PDMAEMA-b-PPEGMA)-grafted superparamagnetic iron oxide nanoparticles (SPIONs) were successfully prepared via a two-step copper-mediated atom transfer radical polymerization (ATRP) method. The macroinitiators were immobilized on the surface of Fe(3)O(4) nanoparticles via effective ligand exchange of oleic acid with the propargyl focal point PAMAM-typed dendron (generation 2.0, denoted as propargyl-D(2.0)) containing four carboxyl acid end groups, following a click reaction with 2'-azidoethyl-2-bromoisobutylate (AEBIB). PDMAEMA and PPEGMA were grown gradually from nanoparticle surfaces using the "grafting from" approach, which rendered the SPIONs soluble in water and reversed aggregation. To the best of our knowledge, this is the first report that describes the functionalization of magnetic nanoparticles with dendritic-linear-brush-like triblock copolymers. The modified nanoparticles were systematically studied via TEM, FT-IR, DLS, XRD, NMR, TGA, and magnetization measurements. DLS measurement confirmed that the obtained dendritic-linear-brush-like triblock copolymer-grafted SPIONs had a uniform hydrodynamic particle size of average diameter less than 30 nm. The dendritic-linear-brush-like triblock copolymer-grafted SPIONs possessed excellent biocompatibility by methyl tetrazolium (MTT) assays against NIH3T3 cells and hemolysis assays with rabbit erythrocytes. Furthermore, an anticancer drug, doxorubicin (Dox), was used as a model drug and loaded into the dendritic-linear-brush-like triblock copolymer-grafted SPIONs, and subsequently, the drug releases were performed in phosphoric acid buffer solution pH = 4.7, 7.4, or 11.0 at 37 °C. The results verify that the dendritic-linear-brush-like triblock copolymer-grafted SPIONs possess pH-responsive drug release behavior. The Dox dose of the loaded and free drug required for 50% cellular growth inhibition was 2.72 and 0.72 μm/mL, respectively, according to MTT assay against a Hella cell line in vitro. Therefore, on the basis of its biocompatibility and drug release effect, the modified SPION could provide a charming opportunity to design some excellent drug delivery systems for therapeutic applications.  相似文献   

12.
Novel less than 100 nm sized magnetic Co0.5Mn0.5Fe2O4-chitosan nanoparticles advantageous in respect of excellent biodegradation and high level of controllability are successfully prepared. TEM and SEM images showed the cubic-shape magnetic Co0.5Mn0.5Fe2O4 particles were encapsulated by spherical chitosan nanoparticles. The release behavior of bovine serum albumin entrapped in the particles was of distinctly difference with the changes of pH value of loading medium. The release of bovine serum albumin in those two kinds of particles in the medium of pH=1.0 was much quicker in pH = 7.4 and 9.18. The amount of Bovine serum albumin (BSA) released from the particles at different time intervals was estimated using UV spectrophotomertic method at 279 nm. The dissolution profile and in vitro release kinetics showed that Co0.5Mn0.5Fe2O4-chitosan nanoparticles were promising for controlled delivery of the drug.  相似文献   

13.
In order to study the dissolution behavior of a highly burnt LWR fuel, a fuel pin irradiated in the DR3 test reactor in Risoe National Laboratory, has been characterized by microstructural examination and then dissolved under PUREX type conditions. The dissolution behavior was investigated and the residues analyzed by scanning electron microscopy and by ICP-MS and IDMS after dissolution.  相似文献   

14.
The structure of poly(organosiloxane) nanocapsules partially filled with iron oxide cores of different sizes was revealed by small angle X-ray scattering and X-ray diffraction. The nanocapsules are synthesized by the formation of a poly(organosiloxane) shell around iron oxide nanoparticles and the simultaneous partial dissolution of these cores. Due to the high scattering contrast of the iron oxide cores compared to the polymer shell, the particle size distribution of the cores inside the capsules can be measured by small angle X-ray scattering. Additional information can be revealed by X-ray diffraction, which gives insights into the formation of the polymer network and the structure of the iron oxide cores. The study shows how the crystallinity and size of the nanoparticles as well as the shape and width of the size distribution can be altered by the synthesis parameters.  相似文献   

15.
We present results from kinetic Monte Carlo (KMC) simulations of diffusion in a model glass former. We find that the diffusion constants obtained from KMC simulations have Arrhenius temperature dependence, while the correct behavior, obtained from molecular dynamics simulations, can be super-Arrhenius. We conclude that the discrepancy is due to undersampling of higher-lying local minima in the KMC runs. We suggest that the relevant connectivity of minima on the potential energy surface is proportional to the energy density of the local minima, which determines the "inherent structure entropy." The changing connectivity with potential energy may produce a correlation between dynamics and thermodynamics.  相似文献   

16.
Five magnesium substituted aluminophosphate molecular sieves (denoted as MgAPO-5 (a–e), AFI topology) with different magnesium contents were synthesized hydrothermally and characterized by XRD, ICP-AES, IR, and NH3-TPD techniques. The characterization data show that the isomorphous substitution of magnesium for aluminum in the pure AFI framework results in MgAPO-5 (a–e) with weak and strong acid sites and that the number of strong acid sites linearly increases with increasing magnesium content (correlation coefficient: 0.9960). n-Hexane catalytic cracking over MgAPO-5 (a–e) was investigated at low conversions (≤5%) in a microflow fixed bed reactor. Under controlled conditions, the reaction was first order in both the n-hexane concentration and the magnesium content. The analysis of the kinetic parameters and the product selectivities suggests that the cracking transformation is effected by strong Mg(II)-related acid sites rather than weak ones and predominantly undergoes the monomolecular protolytic mechanism, which is consistently explained by a proposed kinetic model.  相似文献   

17.
Journal of Computer-Aided Molecular Design - Modern drug discovery employs a ‘screening funnel’ to pick compounds worthy of advancing to the clinic, a multi-step process linking a...  相似文献   

18.
Synthesis of magnetic nanoparticles and their application to bioassays   总被引:2,自引:0,他引:2  
Magnetic nanoparticles have been attracting much interest as a labeling material in the fields of advanced biological and medical applications such as drug delivery, magnetic resonance imaging, and array-based assaying. In this review, synthesis of iron oxide magnetic nanoparticles via a reverse micelle system and modification of their surface by an organosilane agent are discussed. Furthermore, as a practical biological assay system, the magnetic detection of biomolecular interactions is demonstrated by using the combination of a patterned substrate modified with a self-assembled monolayer and the magnetic nanoparticles.  相似文献   

19.
20.
In this work the thermal diffusion behavior of binary mixtures of linear alkanes (heptane, nonane, undecane, tridecane, pentadecane, heptadecane) in benzene has been investigated by thermal diffusion forced Rayleigh scattering (TDFRS) for a range of concentrations and temperatures. The Soret coefficient ST of the alkane was found to be negative for these n-alkane/benzene mixtures indicating that the alkanes are enriched in the warmer regions of the liquid mixtures. For the compositions investigated in this work, the magnitude of the Soret coefficient decreases with increasing chain length and increasing alkane content of the mixtures. The temperature dependence of the Soret coefficient depends on mixture composition and alkane chain length; the slope of ST versus temperature changes from positive to negative with increasing chain length at intermediate compositions. To study the influence of molecular architecture on the Soret effect, mixtures of branched alkanes (2-methylhexane, 3-methylhexane, 2,3-dimethylpentane, 2,4-dimethylpentane, 2,2,3-trimethylbutane, and 2,2,4-trimethylpentane) in benzene were also investigated. Our results for the Soret coefficients show that the tendency for the alkanes to move to the warmer regions of the fluid decreases with increasing degree of branching. The branching effect is so strong that for 2,2,4-trimethylpentane/benzene mixtures the Soret coefficient changes sign at high alkane content and that equimolar 2,2,3-trimethylbutane/benzene mixtures have positive Soret coefficients in the investigated temperature range. In order to investigate the effect of molecular interactions on thermal diffusion, we adapted a recently developed two-chamber lattice model to n-alkane/benzene mixtures. The model includes the effects of chain-length, compressibility, and orientation dependence of benzene-benzene interactions and yields good qualitative predictions for the Soret effect in n-alkane/benzene mixtures. For the branched isomers, we find some correlations between the moments of inertia of the molecules and the Soret coefficients. PACS numbers: 66.10.Cb, 61.25.Hq.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号