共查询到17条相似文献,搜索用时 875 毫秒
1.
基于等几何分析的比例边界有限元方法 总被引:2,自引:0,他引:2
提出了一种具有比例边界有限元的半解析特性和等几何分析的几何特性的新方法。该新方法是在比例边界有限元框架中用NURBS曲线或曲面精确描述域边界几何形状,同时域边界位移场采用描述几何形状的NURBS形函数等参构造。这种新方法具有比例边界有限元固有的径向解析特性和NURBS的高阶连续性的优点。数值算例显示,与传统的比例边界有限元相比,基于等几何分析的比例边界有限元方法提高了域边界单元和域内应力场的连续性,减少了计算自由度。应用此方法可以用较少的计算自由度获得更高连续阶和更高精度的位移、应力和应变场。 相似文献
2.
提出比例边界等几何分析SBIGA(Scaled Boundary IsoGeometric Analysis)方法来求解热传导问题。SBIGA兼具比例边界有限元和等几何分析的优势,特别适用于求解包含无限域和奇异物理场的问题。该方法造型十分方便,在径向具有半解析性质,仅需在计算域边界上用NURBS基函数自然离散,为实现CAD/CAE无缝融合提供了新的途径,大大节约前处理和计算耗时。此外,SBIGA无需进一步与CAD系统数据交换就可以保型细分。三个基准算例证明了其在热传导分析中的有效性。与传统比例边界有限元相比,SBIGA模型消除了几何模型误差,并显示出更高的计算精度和收敛速度。 相似文献
3.
比例边界等几何分析方法Ⅰ:波导本征问题 总被引:2,自引:0,他引:2
提出比例边界等几何方法 (scaled boundary isogeometric analysis, SBIGA), 并用以求解波导本征值问题. 在比例边界等几何坐标变换的基础上, 利用加权余量法将控制偏微分方程进行离散处理, 半弱化为关于边界控制点变量的二阶常微分方程, 即 TE 波或 TM 波波导的比例边界等几何分析的频域方程以及波导动刚度方程, 同时利用连分式求解波导动刚度矩阵. 通过引入辅助变量进一步得出波导本征方程. 该方法只需在求解域的边界上进行等几何离散, 使问题降低一维, 计算工作量大为节约, 并且由于边界的等几何离散, 使得解的精度更高, 进一步节省求解自由度. 以矩形和 L 形波导的本征问题分析为例, 通过与解析解和其他数值方法比较, 结果表明该方法具有精度高、计算工作量小的优点. 相似文献
4.
边界元法解摩擦型的弹性接触问题 总被引:2,自引:0,他引:2
1.弹性接触问题的边界积分方程以两个相互接触弹性域Ω~A和Ω~B为研究对象(图1).对任一弹性域Ω~K及边界Γ~K,可以推导出以增量形式写出的弹性接触问题的边界积分方程 相似文献
5.
6.
在比例边界等几何分析的建模剖分过程中会出现交界面网格非匹配现象,给计算分析带来困难。为了能够处理此类问题,提出了基于非重叠Mortar方法的比例边界等几何分析。该方法能在将全域分解为若干子域时,针对每个子域分别建模和剖分网格,交界面网格无需逐点匹配;采用交叉点修正的非均匀有理B-样条基函数构造Lagrange乘子空间,子域交界面连续条件可通过Mortar条件满足;并根据交界面连续条件进行自由度凝聚,得到对称正定的系数矩阵,可直接求解。分片试验、U形结构和半无限空间上的柔性基础等数值算例验证了本文方法的有效性,计算精度满足要求。 相似文献
7.
边界元法求解三维摩擦接触问题,其中一个关键点在于如何确定滑移方向。即当出现相对滑移时,滑移方向如何确定。当前常采用的方法是,粘结点利用切向面力得到滑移方向,滑移点利用切向相对位移得到滑移方向。不过该方法难以保证收敛性。针对这一问题,本文采用滑移方向预测技术得到滑移方向。即以后出现相对滑移时,滑移方向采用预测技术中得到的滑移方向。由于摩擦接触问题和历史加载相关,本文采用增量法求解。不同摩擦系数下的数值结果都证明了本文算法的有效性和收敛性及滑移方向预测技术的有效性。 相似文献
8.
弹塑性接触问题的非光滑非线性方程组方法 总被引:1,自引:0,他引:1
将求解三维弹性摩擦接触问题的非光滑非线性方程组方法推广到弹塑性(Mises材料)情形,提出了两种应用方法:一种是将非光滑非线性方程组方法和求解弹塑性问题常用的Newton—Raphson迭代方法结合起来;另一种是将问题写成统一的非光滑非线性方程组,直接求解。数值算例验证了两种方法的有效性,并进行了结果比较。 相似文献
9.
10.
将非光滑方程组方法与Mortar StS接触模型(Mortar Segment-to-Segment)相结合,来求解接触面网格非匹配时的弹性接触问题.其中,非光滑方程组方法是求解弹性摩擦接触问题的有效方法,具有精确满足接触条件、迭代算法收敛性有理论保证的优点,但目前仅用于求解网格匹配的接触问题.Mortar StS接触模型可以较为方便地处理网格非匹配接触问题,其特点是不引入过多约束,满足接触分片检验条件,但目前大都采用“试验-误差”迭代方法求解控制方程,对于复杂接触问题,其收敛性不易保证.因此,将二者结合来处理网格非匹配接触问题,既可以提高求解精度,又能使得算法的收敛性得到理论保证.数值算例对接触分片检验和算法的计算精度进行了验证. 相似文献
11.
基于多边形比例边界有限元模拟了重力坝裂缝扩展过程,综合考虑了坝-库水-地基相互作用、裂缝面接触和缝水压力的影响。其中该接触模型能够有效防止裂缝面的相互嵌入;该缝水模型除能考虑裂缝面开合速度、缝隙宽度和水流形态对缝水压力分布的影响,还可基于连续性条件模拟缝内水体流动和空化的现象。以Koyna坝裂缝扩展为例,研究了裂缝面接触条件和缝水压力对计算结果的影响。结果显示,考虑接触的影响,震损较为严重。而与假定为常水压力分布的情况相比,实际的缝水压力分布形式对结果影响较为复杂。在裂缝张开时,减小了裂缝扩展的可能,而在裂缝闭合时正好与之相反。 相似文献
12.
13.
几何精确NURBS有限元中边界条件施加方式对精度影响的三维计算分析 总被引:1,自引:1,他引:1
非均匀有理B样条(NURBS)有限元法把计算机辅助几何设计(CAGD)中的NURBS几何构形方法与有限元方法有机结合起来,有效消除了有限元离散模型的几何误差,提高了计算精度。但是由于NURBS基函数不是插值函数,直接在控制节点上施加位移边界条件会引起较大误差。本文详细讨论了NURBS基函数的插值特性,在NURBS有限元分析中采用罚函数法施加位移边界条件,提高了收敛率和计算精度。结合典型三维弹性力学问题,对两种施加位移边界条件的方法进行了对比和分析。计算结果表明,直接施加位移边界条件会导致收敛率和精度的明显降低,而基于罚函数法的NURBS有限元分析则能达到最优收敛率,并具有更高的精度。 相似文献
14.
比例边界有限元是一种只需在边界上划分网格且无需基本解的半解析方法,能有效处理应力奇异性和无边界问题.论文提出了一种比例边界有限元的二阶灵敏度分析方法,可以准确而高效地求解响应关于参数的二阶梯度.首先通过建立仅需右特征向量的哈密顿矩阵特征灵敏度分析方程,发展了一种改进的比例边界有限元一阶灵敏度分析方法;其次,进一步通过构建二阶哈密顿矩阵特征灵敏度分析方程,并对比例边界有限元系统方程进行一系列二次直接微分,提出了一种半解析形式的比例边界有限元二阶灵敏度分析方法.该方法被应用于线弹性裂纹结构的形状灵敏度分析和不确定性传播分析.最后,给出了两个数值算例验证论文方法的有效性. 相似文献
15.
离散正交法(DOM)离散点的正交分析与程序设计 总被引:1,自引:0,他引:1
对能够求解一系列线性常微分方程组边值问题的数值计算方法———离散正交法(DOM)进行了离散点的正交分析,给出了计算机实现数值计算的程序设计原理与计算流程图,指出了该方法能够克服传统计算方法由于所求函数的快速增长所引起的边界效应和局部效应的缺点,给出了得到稳定计算过程的可能性。为了推广应用,文中介绍了离散正交法的基本原理、实现方法和求解过程,讨论了采用离散正交法来求解非线性问题的处理方法。并且以承受均布载荷的环形板为例,将采用离散正交法的计算结果与经典解作了对比。 相似文献
16.
引入了一种求解波导本征值问题的高效而精确算法-比例边界有限元方法SBFEM (Scaled Boundary Finite Element Method).该方法的一个特点是只需在边界上进行离散,问题降低一维,使计算工作量大大减少;另一特点是所建立的控制方程为二阶常微分方程,可以解析地求解,使计算精度得到了保证.论文利用变分原理并通过比例边界坐标变换,推导了TE波和TM波波导的比例边界有限元频域方程以及波导动剐度方程,同时给出了波导动刚度矩阵的连分式解形式,通过引入辅助变量进一步得出波导特征值方程并求出波导本征值.以矩形、L形波导和叶型加载矩形波导的本征问题分析为例,通过与解析解及其他数值方法比较,结果表明,此方法具有精度高、计算工作量小的优点,而且随着连分式阶数增加收敛速度快.进一步分析了一类角切四脊正方形波导的传输特性. 相似文献
17.
Several effective numerical methods for solving the elasto-plastic contact problems with friction are presented. First, a
direct substitution method is employed to impose the contact constraint conditions on condensed finite element equations,
thus resulting in a reduction by half in the dimension of final governing equations. Second, an algorithm composed of contact
condition probes and elasto-plastic iterations is utilized to solve the governing equation, which distinguishes two kinds
of nonlinearities, and makes the solution unique. In addition, Positive-Negative Sequence Modification Method is used to condense
the finite element equations of each substructure and an analytical integration is introduced to determine the elasto-plastic
status after each time step or each iteration, hence the computational efficiency is enhanced to a great extent. Finally,
several test and practical examples are presented showing the validity and versatility of these methods and algorithms.
The Project Supported by National Natural Science Foundation of China. 相似文献