首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
DNA probes were immobilized on silicon surfaces through ester condensation between the -COOH group on the surface and the terminal -OH group in the oligonucleotide, and the surface density of DNA probes against the concentration of immobilization solution was measured by radioactive labeling. The dissociation of DNA duplex on the surface by an electric potential was studied with the scanning potential hairpin denaturation/dissociation (SPHD). The influence of the stem length in the hairpin probe on the SPHD curve was systematically investigated. It was found that the capability of discrimination on single nucleotide polymorphism (SNP) by a hairpin probe was related to the free energy of formation of the secondary structure in the probe (DeltaG(ss)). In our system, when DeltaG(ss) was around -3 kcal/mol, an optimal recognition of SNP was reached and the SPHD curve was sigmoid. In contrast, the equivalent SPHD curve from a linear probe was exponential-decay alike with a poor discrimination of SNP. The concentration dependent experiments showed good linearity between the melting potential and logarithm of target concentration in the range of 1 x 10(-9) to 5 x 10(-7) M.  相似文献   

2.
Zhang H  Wang M  Gao Q  Qi H  Zhang C 《Talanta》2011,84(3):771-776
A novel fluorescent method for the detection of single nucleotide polymorphism (SNP) was developed using a hairpin DNA containing nucleotide base analog pyrrolo-deoxycytidine (P-dC) as a fluorescent probe. This fluorescent probe was designed by incorporating a fluorescent P-dC into a stem of the hairpin DNA, whose sequence of the loop moiety complemented the target single strand DNA (ss-DNA). In the absence of the target ss-DNA, the fluorescent probe stays a closed configuration in which the P-dC is located in the double strand stem of the fluorescent probe, such that there is weak fluorescence, attributed to a more efficient stacking and collisional quenching of neighboring bases. In the presence of target ss-DNA, upon hybridizing the ss-DNA to the loop moiety, a stem-loop of the fluorescent probe is opened and the P-dC is located in the ss-DNA, thus resulting in strong fluorescence. The effective discrimination of the SNP, including single base mismatch ss-DNA (A, T, G) and double mismatch DNA (C, C), against perfect complementary ss-DNA was achieved by increased fluorescence intensity, and verified by thermal denaturation and circular dichroism spectroscopy. Relative fluorescence intensity had a linear relationship with the concentration of perfect complementary ss-DNA and ranged from 50 nM to 3.0 μM. The linear regression equation was F/F0 = 2.73 C (μM) + 1.14 (R = 0.9961) and the detection limit of perfect complementary ss-DNA was 16 nM (S/N = 3). This study demonstrates that a hairpin DNA containing nucleotide base analog P-dC is a promising fluorescent probe for the effective discrimination of SNP and for highly sensitive detection of perfect complementary DNA.  相似文献   

3.
Electrochemical detection of nucleic acid base mismatches related to Apa I single nucleotide polymorphism (SNP) in the vitamin D receptor gene was performed successfully using 7‐dimethyl‐amino‐1,2‐benzophenoxazinium salt (Meldola's blue, MDB) with 10.9 pmol/100 μL of detection limit. MDB reduction signals obtained from probe, mismatch(probe‐SNP containing target) and hybrid(probe‐target) modified pencil graphite electrode(PGE) increased respectively. The sensor was able to clearly distinguish perfect match from mismatch DNA in a 30 min. detection time. Several factors affecting on the hybridization and indicator response are studied to maximize sensitivity and selectivity. The advantages of the biosensor are discussed in comparison with previous electrochemical assays for DNA hybridization.  相似文献   

4.
Yaku H  Yukimasa T  Nakano S  Sugimoto N  Oka H 《Electrophoresis》2008,29(20):4130-4140
PCR experiments using DNA primers forming mismatch pairing with template lambda DNA at the 3' end were carried out in order to develop allele-specific primers capable of detecting SNP in genomes without generating pseudopositive amplification products, and thus avoiding the so-called pseudopositive problem. Detectable amounts of PCR products were obtained when primers forming a single or two mismatch pairings at the 3' end were used. In particular, 3' terminal A/C or T/C (primer/template) mismatches tended to allow PCR amplification to proceed, resulting in pseudopositive results in many cases. While less PCR product was observed for primers forming three terminal mismatch pairings, target DNA sequences were efficiently amplified by primers forming two mismatch pairings next to the terminal G/C base pairing. These results indicate that selecting a primer having a 3' terminal nucleotide that recognizes the SNP nucleotide and the next two nucleotides that form mismatch pairings with the template sequence can be used as an allele-specific primer that eliminates the pseudopositive problem. Trials with the human ABO genes demonstrated that this primer design is also useful for detecting a single base pair difference in gene sequences with a signal-to-noise ratio of at least 45.  相似文献   

5.
一种基于磁性纳米粒子PCR的高通量SNP分型方法   总被引:1,自引:0,他引:1  
利用磁性纳米粒子PCR扩增(MNPs-PCR)和等位基因特异性双色荧光探针(Cy3, Cy5)杂交, 建立了一种单核苷酸多态性(SNP)分型的新方法. 应用该方法对9个样本MTHFR基因的C677T多态进行检测, 野生和突变型样本正错配信号比大于9.0, 杂合型正错配信号比接近1.0, 分型结果经测序验证. 此方法无须产物纯化、浓缩, 扫描分型结果快速、直观, 是一种操作简单、快速、高通量、高灵敏度的分型方法.  相似文献   

6.
Ng JK  Feng H  Liu WT 《Analytica chimica acta》2007,582(2):295-303
A microfluidic device incorporating monolayered beads is developed for the discrimination of single-nucleotide mismatches, based on the differential dissociation kinetics between perfect match (PM) and mismatched (MM) duplexes. The monolayered beads are used as solid support for the immobilization of oligonucleotide probes containing a single-base variation. Target oligonucleotides hybridize to the probes, forming either PM duplexes or MM duplexes containing a single mismatch. Optimization studies show that PM and MM duplexes are easily discriminated based on their dissociation but not hybridization kinetics under an optimized buffer composition of 100 mM NaCl and 50% formamide. Detection of single-nucleotide polymorphism (SNP) using the device is demonstrated within 8 min using four probes containing all the possible single-base variants. The device can easily be modified to integrate multiplexed detection, making high-throughput SNP detection possible.  相似文献   

7.
Hairpin polyamides coupled head-to head with alkyl linkers of varying lengths were synthesized, and their DNA binding properties were determined. The DNA binding affinities of six-ring hairpin dimers Im-Im-Py-(R)[Im-Im-Py-(R)(HNCO(CH))(n)(CO)gamma-Py-Py-Py-beta-Dp](NH)gamma-Im-Py-Py-beta-Dp (1-4) (where n = 1-4) for their 10-bp, 11-bp, and 12-bp match sites 5'-TGGCATACCA-3', 5'-TGGCATTACCA-3', and 5'-TGGCATATACCA-3' were determined by quantitative DNase I footprint titrations. The most selective dimer Im-Im-Py-(R)[Im-Im-Py-(R)(HNCO(CH)(2))(2)(CO)gamma-Py-Py-Py-beta-Dp](NH)gamma-Im-Py-Py-beta-Dp (2) binds the 10-bp site match site with an equilibrium association constant of K(a) = 7.5 x 10(10) M(-1) and displays 25- and 140-fold selectivity over the 11-bp and 12-bp match sites, respectively. The affinity toward single base pair mismatched sequences is 4- to 8-fold lower if one hairpin module of the dimer is affected, but close to 200-fold lower if both hairpin modules face a single mismatch base pair. The head-to-head hairpin dimer motif expands the binding site size of DNA sequences targetable with polyamides.  相似文献   

8.
Sequence specific fluorescence detection of double strand DNA   总被引:2,自引:0,他引:2  
Methods for the fluorescent detection of specific sequences of double strand DNA in homogeneous solution may be useful in the field of human genetics. A series of hairpin polyamides with tetramethyl rhodamine (TMR) attached to an internal pyrrole ring were synthesized, and the fluorescence properties of the polyamide-fluorophore conjugates in the presence and absence of duplex DNA were examined. We observe weak TMR fluorescence in the absence of DNA. Addition of >/=1:1 match DNA affords a significant fluorescence increase over equimolar mismatch DNA for each polyamide-TMR conjugate. Polyamide-fluorophore conjugates offer a new class of sensors for the detection of specific DNA sequences without the need for denaturation. The polyamide-dye fluorescence-based method can be used to screen in parallel the interactions between aromatic ring pairs and the minor groove of DNA even when the binding site contains a non-Watson-Crick DNA base pair. A ranking of the specificity of three polyamide ring pairs-Py/Py, Im/Py, and Im/Im-was established for all 16 possible base pairs of A, T, G, and C in the minor groove. We find that Im/Im is an energetically favorable ring pair for minor groove recognition of the T.G base pair.  相似文献   

9.
An improved allele-specific PCR(AS-PCR) approach was applied to investigating-55C/T polymorphism in promoter region of the uncoupling protein 3(UCP3)gene.AS-PCR is a competitive PCR method which is based on positioning the 3' base of a PCR primer to match one single nucleotide polymorphism(SNP) allele and accurately extend only the correctly matched primer.But it is limited in use because of its poor specificity.In this study,we improved the specificity of AS-PCR by introducing additional mismatch at the pe...  相似文献   

10.
This paper describes the design of novel base-discriminating fluorescent (BDF) nucleobases and their application to single nucleotide polymorphism (SNP) typing. We devised novel BDF nucleosides, (Py)U and (Py)C, which contain a pyrenecarboxamide chromophore connected by a propargyl linker. The fluorescence spectrum of the duplex containing a (Py)U/A base pair showed a strong emission at 397 nm on 327 nm excitation. In contrast, the fluorescence of duplexes containing (Py)U/N base pairs (N = C, G, or T) was considerably weaker. The proposed structure of the duplex containing a matched (Py)U/A base pair suggests that the high polarity near the pyrenecarboxamide group is responsible for the strong A-selective fluorescence emission. Moreover, the fluorescence of the duplex containing a (Py)U/A base pair was not quenched by a flanking C/G base pair. The fluorescence properties are quite different from previous BDF nucleobases, where fluorescence is quenchable by flanking C/G base pairs. The duplex containing the C derivative, (Py)C, selectively emitted fluorescence when the base opposite (Py)C was G. The drastic change of fluorescence intensity by the nature of the complementary base is extremely useful for SNP typing. (Py)U- and (Py)C-containing oligodeoxynucleotides acted as effective reporter probes for homogeneous SNP typing of DNA samples containing c-Ha-ras and BRCA2 SNP sites.  相似文献   

11.
One of the main factors that can affect the quality of microarray results is the microarray hybridization specificity. The key factor that affects hybridization specificity is the design of the probes. In this paper, we described a novel oligonucleotide probe containing deoxyinosines aimed at improving DNA hybridization specificity. We compared different probes to determine the distance between deoxyinosine base and SNPs site and the number of deoxyinosine bases. The new probe sequences contained two set of deoxyinosines (each set had two deoxyinosines), in which the interval between SNP site and each set of deoxyinosines was two bases. The new probes could obtain the highest hybridization specificity. The experimental results showed that probes containing deoxyinosines hybridized effectively to the perfectly matched target and improved the hybridization specificity of DNA microarray. By including a simple washing step after hybridization, these probes could distinguish matched targets from single‐base‐mismatched sequences perfectly. For the probes containing deoxyinosines, the fluorescence intensity of a match sequence was more than eight times stronger than that of a mismatch. However, the intensity ratio was only 1.3 times or less for the probes without deoxyinosines. Finally, using hybridization of the PCR product microarrays, we successfully genotyped SNP of 140 samples using these new labeled probes. Our results show that this is a useful new strategy for modifying oligonucleotide probes for use in DNA microarray analysis.  相似文献   

12.
A method for the development of continuous density gradients of immobilized oligonucleotide probes (20mer) along the length of microfluidic channels is demonstrated. The development of continuous density gradients was achieved using variable electrokinetic transport of probes in hybrid glass-polydimethylsiloxane microfluidic chips. The probes were terminated with an amine functional group, and were delivered by electrokinetic pumping to the flat glass channel wall after it had been densely coated with covalently immobilized aldehyde groups. This method provided probe immobilization densities ranging from 4.5(±0.8)×10(13) to 2.5(±0.8)×10(11) molecules cm(-2), with longitudinal dilution and differential mass transport of the injected plug of probes being the primary factors responsible for the gradient of density. The utility of the resulting density gradient of immobilized probes to control the selectivity of hybridization was demonstrated at room temperature by discrimination between a fully complementary oligonucleotide target, and a target strand containing 3 base pair mismatches (3 BPM) based on the spatial pattern of hybridization for sub-picomole quantities of targets. Single nucleotide polymorphism (SNP) discrimination was possible when temperature control was implemented to improve resolution of the mismatch discrimination, allowing SNP discrimination at 35 °C with a contrast ratio of almost 5 to 1.  相似文献   

13.
Heteromorphic hybrid duplex DNA complexes are duplex states, other than perfectly matched duplexes, that can form when single strands comprising several different perfectly matched duplexes are simultaneously present in solution. Such cross-hybridization "side reactions" are of particular nuisance in multiplex reaction schemes, where many strands are designed to hybridize in parallel fashion with only their corresponding perfect complement strand. Relative to the perfect match duplexes, the sequence dependent features of these heteromorphic duplex states and their thermodynamic stability are an important consideration for multiplex hybridization reaction design. We have measured absorbance versus temperature melting curves and performed differential scanning calorimetry measurements on various mixtures of eight different 24 base single strands. When perfect complementary pairs of strands are mixed in single reactions, four perfectly matched duplexes form. When mixtures of strands that are not perfectly matched are prepared and analyzed, melting transitions for cross-hybridization are observed along with significant hyperchromicity changes. This is indicative of a melting hybrid, heteromorphic duplex states formed from two nonperfectly matched strands. In addition, when both the perfectly matched and noncomplementary strands are mixed together (in multiplex hybridization reactions) at molar ratios of 1:1, 3:1, and 1:3, evidence of perfect duplex and heteromorphic duplex complexes is found in all cases. A new analytical tool for considering heterogeneous, duplex complexes in multiplex hybridization mixtures is presented and employed to interpret the acquired melting data.  相似文献   

14.
This work describes a nonenzymatic, isothermal genotyping method based on the kinetic differences exhibited in the dehybridization of perfectly matched (PM) and single-base mismatched (MM) DNA duplexes in an alkaline solution. Multifunctional encoded hydrogel particles incorporating allele-specific oligonucleotide (ASO) probes in two distinct regions were fabricated by using microfluidic-based stop-flow lithography. Each particle contained two distinct ASO probe sequences differing at a single base position, and thus each particle was capable of simultaneously probing two distinct target alleles. Fluorescently labeled target alleles were annealed to both probe regions of a particle, and the rate of duplex dehybridization was monitored by using fluorescence microscopy. Duplex dehybridization was achieved through an alkaline stimulus using either a pH step function or a temporal pH gradient. When a single target probe sequence was used, the rate of mismatch duplex dehybridization could be discriminated from the rate of perfect match duplex dehybridization. In a more demanding application in which two distinct probe sequences were used, we found that the rate profiles provided a means to discriminate probe dehybridizations from both of the two mismatched duplexes as well as to distinguish at high certainty the dehybridization of the two perfectly matched duplexes. These results demonstrate an ability of alkaline dehybridization to correctly discriminate the rank hierarchy of thermodynamic stability among four sets of perfect match and single-base mismatch duplexes. We further demonstrate that these rate profiles are strongly temperature dependent and illustrate how the sensitivity can be compensated beneficially by the use of an actuating gradient pH field.  相似文献   

15.
Biomolecular detection with a thin membrane transducer   总被引:1,自引:0,他引:1  
Cha M  Shin J  Kim JH  Kim I  Choi J  Lee N  Kim BG  Lee J 《Lab on a chip》2008,8(6):932-937
We present a thin membrane transducer (TMT) that can detect nucleic acid based biomolecular reactions including DNA hybridization and protein recognition by aptamers. Specific molecular interactions on an extremely thin and flexible membrane surface cause the deflection of the membrane due to surface stress change which can be measured by a compact capacitive circuit. A gold-coated thin PDMS membrane assembled with metal patterned glass substrate is used to realize the capacitive detection. It is demonstrated that perfect match and mismatch hybridizations can be sharply discriminated with a 16-mer DNA oligonucleotide immobilized on the gold-coated surface. While the mismatched sample caused little capacitance change, the perfectly matched sample caused a well-defined capacitance decrease vs. time due to an upward deformation of the membrane by a compressive surface stress. Additionally, the TMT demonstrated the single nucleotide polymorphism (SNP) capabilities which enabled a detection of mismatching base pairs in the middle of the sequence. It is intriguing that the increase of capacitance, therefore a downward deflection due to tensile stress, was observed with the internal double mismatch hybridization. We further present the detection of thrombin protein through ligand-receptor type recognition with 15-mer thrombin aptamer as a receptor. Key aspects of this detection such as the effect of concentration variation are investigated. This capacitive thin membrane transducer presents a completely new approach for detecting biomolecular reactions with high sensitivity and specificity without molecular labelling and optical measurement.  相似文献   

16.
We inserted a fluorene-labeled deoxyuridine derivative, synthesized using Sonogashira coupling, efficiently into the loop region of a DNA hairpin using phosphoramidite chemistry. This molecular beacon, which features no additional fluorescence quencher, discriminates between perfect and one-base-mismatched base pairing by changes in its fluorescence intensity. The discrimination factor is 14.7 for the recognition of a single (A/C) base mismatch.  相似文献   

17.
Single nucleotide polymorphisms (SNPs) are base differences in the human genome. These differences are favorable markers for genetic factors including those associated with risks of complex diseases and individual responses to drugs. When two duplex DNAs with different types of SNPs are mixed and reannealed, the two novel heteroduplexes containing mismatched base pairs are formed in addition to the two initial perfectly matched homoduplexes. Heteroduplex analysis recognizing the newly formed mismatched base pairs is useful for SNP detection. Various strategies to detect the mismatched base pairs were devised due to the potential applications of SNPs. However, they were not always convenient and accurate. Here, we propose a novel strategy to detect the mismatched base pairs by the specific interaction between the Hg2+ ion and a T:T mismatched base pair and that between the Ag+ ion and a C:C mismatched base pair. UV melting indicated that the melting temperature of only the heteroduplexes with the T:T and C:C mismatched base pair specifically increased on adding the Hg2+ and Ag+ ion, respectively. Fluorescence resonance energy transfer analyses indicated that the intensity of fluorophore emission of only the fluorophore and quencher-labeled heteroduplexes with the T:T and C:C mismatched base pair specifically decreased on adding the Hg2+ and Ag+ ion, respectively. We propose that the addition of the metal ion could be a convenient and accurate strategy to detect the mismatched base pair in the heteroduplex. This novel strategy might make the heteroduplex analysis easy and eventually lead to better SNP detection.  相似文献   

18.
We report the first electrochemical system for the detection of single‐nucleotide polymorphisms (SNPs) that can accurately discriminate homozygous and heterozygous genotypes using microfluidics technology. To achieve this, our system performs real‐time melting‐curve analysis of surface‐immobilized hybridization probes. As an example, we used our sensor to analyze two SNPs in the apolipoprotein E (ApoE) gene, where homozygous and heterozygous mutations greatly affect the risk of late‐onset Alzheimer’s disease. Using probes specific for each SNP, we simultaneously acquired melting curves for probe–target duplexes at two different loci and thereby accurately distinguish all six possible ApoE allele combinations. Since the design of our device and probes can be readily adapted for targeting other loci, we believe that our method offers a modular platform for the diagnosis of SNP‐based diseases and personalized medicine.  相似文献   

19.
提出了一种应用磁性颗粒和通用连接子扩增技术(Linker-PCR)的多位点单核苷酸多态性(SNP)分型方法. 该方法首先通过酶切将样本基因组DNA打断, 然后将通用连接子通过T4 DNA连接酶与各个酶切片段连接, 利用生物素标记的通用引物将样本进行全基因组扩增. 扩增后, 将生物素标记的Linker-PCR扩增产物固定到亲合素修饰的磁性颗粒表面, 通过与双色荧光标记的等位基因特异性探针杂交, 对待测位点进行分型. 利用该方法, 我们对10个样本MTHFR基因上的2个SNP位点进行了分型, 分型结果准确、正错配信号比大于3. 由于利用Linker-PCR技术来实现对靶序列的全基因组扩增, 该方法非常适用于大量样本的多基因多位点的SNP分型研究.  相似文献   

20.
For certain DNA hairpin loops, a CG closing base pair has enhanced stability over other closing base pairs, which cannot be explained by the current nearest-neighbor model. We report the use of three-carbon (C3) spacers to investigate the expandability of DNA hairpin loops and the coupling between the loop and closing base pair. Inserting the C3-spacers at most positions in these model loops produced only a modest stabilization or destabilization except for insertion between the 5' end of the loop and the CG closing base pair, which gave a large destabilization. Further investigation on tetraloops and triloops with other closing base pairs established that this destabilization is specific to the unusually stable CG closing base pair. Studies with the nucleotide analogues 2-aminopurine and 2,6-diaminopurine indicated that this stabilization may be due to coupling between functional groups on the first base of the loop and the CG closing base pair. The C3-spacers provide a simple way to interrupt potential interactions and thereby probe loop/stem coupling.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号