首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We deal with the problem of orbital stability of planar periodic motions of a dynamically symmetric heavy rigid body with a fixed point. We suppose that the center of mass of the body lies in the equatorial plane of the ellipsoid of inertia. Unperturbed periodic motions are planar pendulum-like oscillations or rotations of the body around a principal axis keeping a fixed horizontal position. Local coordinates are introduced in a neighborhood of the unperturbed periodic motion and equations of the perturbed motion are obtained in Hamiltonian form. Regions of orbital instability are established by means of linear analysis. Outside the above-mentioned regions, nonlinear analysis is performed taking into account terms up to degree 4 in the expansion of the Hamiltonian in a neighborhood of unperturbed motion. The nonlinear problem of orbital stability is reduced to analysis of stability of a fixed point of the symplectic map generated by the equations of the perturbed motion. The coefficients of the symplectic map are determined numerically. Rigorous results on the orbital stability or instability of unperturbed motion are obtained by analyzing these coefficients. The orbital stability is investigated analytically in two limiting cases: small amplitude oscillations and rotations with large angular velocities when a small parameter can be introduced.  相似文献   

2.
New dynamic equations are proposed for a rigid body, without using local parametrization of the rotation group to describe the rotational part of the motion. A simple system of differential-algebraic equations, well suited for constructing the equations of motion of articulated bodies, is obtained.  相似文献   

3.
The stability of the permanent rotation of a symmetrical heavy body with a viscous filling is investigated. A finite-dimensional phenomenological model of the “internal friction” with which the filling acts on the wall of the cavity is constructed based on the Helmholtz equations for a vortex. The boundaries of the stability limit are constructed and the interaction between the internal friction and the external damping is tracked. It is shown that the cases of a cavity that is oblate and prolate along the axis of rotation lead to the existence of different forms of stability regions.  相似文献   

4.
It is well known that rotations of a free three-dimensional rigid body around the long and short axes of inertia are stable, while the rotation around the intermediate axis is unstable. We generalize this result to the case of a rigid body in a space of arbitrary dimension.  相似文献   

5.
The permanent rotations of a gyrostat about its fixed centre of gravity are investigated. It is assumed that the lines of action of the time-dependent gyrostatic momentum vector maintain a constant position in a reference system attached to the carrier body. It is shown that, if the total angular momentum of the gyrostat is non-zero, permanent rotations can only occur about its principal axes of inertia. In that case the gyrostatic momentum vector must be collinear with one of the principal axes of inertia of the gyrostat.  相似文献   

6.
We introduce a concept of weak solution for a boundary value problem modelling the motion of a rigid body immersed in a viscous fluid. The time variation of the fluid's domain (due to the motion of the rigid body) is not known a priori, so we deal with a free boundary value problem. Our main theorem asserts the existence of at least one weak solution for this problem. The result is global in time provided that the rigid body does not touch the boundary.  相似文献   

7.
A rigorous non-linear analysis of the orbital stability of plane periodic motions (pendulum oscillations and rotations) of a dynamically symmetrical heavy rigid body with one fixed point is carried out. It is assumed that the principal moments of inertia of the rigid body, calculated for the fixed point, are related by the same equation as in the Kovalevskaya case, but here no limitations are imposed on the position of the mass centre of the body. In the case of oscillations of small amplitude and in the case of rotations with high angular velocities, when it is possible to introduce a small parameter, the orbital stability is investigated analytically. For arbitrary values of the parameters, the non-linear problem of orbital stability is reduced to an analysis of the stability of a fixed point of the simplectic mapping, generated by the system of equations of perturbed motion. The simplectic mapping coefficients are calculated numerically, and from their values, using well-known criteria, conclusions are drawn regarding the orbital stability or instability of the periodic motion. It is shown that, when the mass centre lies on the axis of dynamic symmetry (the case of Lagrange integrability), the well-known stability criteria are inapplicable. In this case, the orbital instability of the periodic motions is proved using Chetayev's theorem. The results of the analysis are presented in the form of stability diagrams in the parameter plane of the problem.  相似文献   

8.
Basic investigation techniques, algorithms, and results are presented for nonlinear oscillations and stability of steady rotations and periodic motions of a rigid body, colliding with a rigid surface, in a uniform gravity field.   相似文献   

9.
The problem of the translational-rotational motion of a rigid body with a triaxial ellipsoid of inertia in a central gravitational field is considered. The body is modelled by a weightless sphere, at the ends of the three mutually perpendicular diameters of which there are point masses. It is shown that, unlike the cases when the approximate expression for the potential of the gravity forces is used, there are not only “trivial” steady motions of the body, for which the main central axes of inertia of the body coincide with the axes of the orbital system of coordinates, but also other classes of steady motions. In addition, the stability of these “trivial” steady motions is investigated, and the possibility of secular stability of the motions, unstable in the satellite approximation, is pointed out.  相似文献   

10.
11.
This paper is devoted to the controllability of a 2D fluid–structure system. The fluid is viscous and incompressible and its motion is modelled by the Navier–Stokes equations whereas the structure is a rigid ball which satisfies Newton's laws. We prove the local null controllability for the velocities of the fluid and of the rigid body and the exact controllability for the position of the rigid body. An important part of the proof relies on a new Carleman inequality for an auxiliary linear system coupling the Stokes equations with some ordinary differential equations.  相似文献   

12.
The problem of simultaneous motion about a fixed point O of a solid body and unevenly heated viscous incompressible fluid completely filling a finite cavity of the body is considered in linear formulation. The center of mass of the system body plus fluid in the state of mechanical equilibrium is assumed to coincide with point O. The theorem on solvability of the Cauchy problem for small unsteady equilibrium perturbations is proved, and normal perturbations and the spectrum of the problem arising in the analysis of such perturbations are investigated. It is shown that the whole spectrum consists of normal eigenvalues and lies in some half-band containing the real axis. It is shown that the respective system of root vectors is complete. Properties of the spectrum and the dependence on Rayleigh numbers are investigated. Rayleigh numbers for which the real parts of eigenvalues are positive,i.e. when the generated oscillating normal perturbations are damped in time, are evaluated in the case of the fluid being heated from below and above.  相似文献   

13.
We consider a problem about the motion of a heavy rigid body in an unbounded volume of an ideal irrotational incompressible fluid. This problem generalizes a classical Kirchhoff problem describing the inertial motion of a rigid body in a fluid. We study different special statements of the problem: the plane motion and the motion of an axially symmetric body. In the general case of motion of a rigid body, we study the stability of partial solutions and point out limiting behaviors of the motion when the time increases infinitely. Using numerical computations on the plane of initial conditions, we construct domains corresponding to different types of the asymptotic behavior. We establish the fractal nature of the boundary separating these domains.  相似文献   

14.
N. Khlistunova 《PAMM》2002,1(1):121-122
In contrast to the classical problem of motion of a heavy rigid body about a fixed point where the permanent rotations are well known and completely investigated [7, 3] as the most simple and good visually demonstrated type of motions, in multibody mechanics under an increasing of quantity of the system bodies, mechanical parameters and the order of differential motion equations the study of such motions is more complicated problem. The problem on permanent rotations of two connected rigid bodies under influence of gravity force was investigated in [2, 4]. In this paper a system consisting of arbitrary constant quantity, n, of heavy rigid bodies which are sequentially jointed in a chain is considered. The conditions of existence of motions when each body permanently rotates about the vertical vector are determined. These conditions are analyzed in a general case when the bodies angular velocities are different.  相似文献   

15.
Viscoelastic non-Newtonian fluids can be achieved by adding a small amount of polymer additives to a Newtonian fluid. In this paper, numerical simulations are used to investigate the influence of such polymer additives on the behavior of flow past a circular cylinder. A numerical method is proposed that discretizes the non-linear viscoelastic system on a uniform Cartesian grid, with a penalization method to model the presence of the cylinder. The drag of the cylinder and the flow behavior under the effect of different Reynolds numbers (Re), Weissenberg numbers (Wi) and polymer viscosity ratios (ε) are studied. Numerical results show that different flow characteristics are exhibited in different parameter zones. The polymer viscosity ratio plays an important role at low Weissenberg and Reynolds numbers, but as the Reynolds and Weissenberg numbers increase, the influence of ε weakens. The drag force of the cylinder is mostly affected by the Reynolds and Weissenberg numbers. At low Reynolds numbers, the drag of the cylinder and the flow fields are only affected by a large value of Wi when the elastic forces are strong. Non-trivial drag reduction occurs only when there is vortex shedding in the wake flow, whereas drag enhancement happens when the vortex shedding is inhibited.  相似文献   

16.
We study the system of a 2D rigid body moving in an unbounded volume of incompressible, vortex-free perfect fluid which is at rest at infinity. The body is equipped with a gyrostat and a so-called Flettner rotor. Due to the latter the body is subject to a lifting force (Magnus effect). The rotational velocities of the gyrostat and the rotor are assumed to be known functions of time (control inputs). The equations of motion are presented in the form of the Kirchhoff equations. The integrals of motion are given in the case of piecewise continuous control. Using these integrals we obtain a (reduced) system of first-order differential equations on the configuration space. Then an optimal control problem for several types of the inputs is solved using genetic algorithms.  相似文献   

17.
The dynamical Euler equations describing the motion of a non-symmetrical solid about the centre of mass in the field of a constant external moment and a dissipative one are considered. It is assumed that the external moment specified with respect to axes attached to the body acts about the intermediate central axis of inertia of the body. The conditions for global asymptotic stability as well as the stability in total of steady rotations of the solid are obtained.  相似文献   

18.
Science China Mathematics - In this survey we report some recent results on the dynamics of a rigid body immersed in a two-dimensional incompressible perfect fluid, with an emphasis on the...  相似文献   

19.
One of the most notable effects in mechanics is the stabilization of the unstable upper equilibrium position of a symmetric body fixed from one point on its axis of symmetry, either by giving the body a suitable angular velocity or by adding a suitably spinned rotor along its axis. This effect is widely used in technology and in space dynamics. The aim of the present article is to explore the effect of the presence of a rotor on a simple periodic motion of the rigid body and its motion as a physical pendulum. The equation in the variation for pendulum vibrations takes the form $$\frac{{d^2 \gamma _3 }} {{du^2 }} + \alpha \left[ {\alpha v^2 + \frac{1} {2} + \rho ^2 - \left( {\alpha + 1} \right)v^2 sn^2 u + 2v\rho \sqrt \alpha cnu} \right]\gamma _3 = 0,$$ in which α depends on the moments of inertia, ρ on the gyrostatic momentum of the rotor and ν (the modulus of the elliptic function) depends on the total energy of the motion. This equation, which reduces to Lame’s equation when ρ = 0, has not been studied to any extent in the literature. The determination of the zones of stability and instability of plane motion reduces to finding conditions for the existence of primitive periodic solutions (with periods 4K(ν), 8K(ν)) with those parameters. Complete analysis of primitive periodic solutions of this equation is performed analogously to that of Ince for Lame’s equation. Zones of stability and instability are determined analytically and illustrated in a graphical form by plotting surfaces separating them in the three-dimensional space of parameters. The problem is also solved numerically in certain regions of the parameter space, and results are compared to analytical ones.  相似文献   

20.
In this paper we study the Stokes approximation of the self-propelled motion of a rigid body in a viscous liquid that fills all the three-dimensional space exterior to the body. We prove the existence and uniqueness of strong solution to the coupled systems of equations describing the motion of the system body-liquid, for any time and any regular distribution of velocity on the boundary of the body. For the corresponding stationary problem we derive Lp-estimates for the solution in terms of the data. Finally, we prove that every steady solution is attainable as the limit, when t→∞, of an unsteady self-propelled solution which starts from rest.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号