首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2,6-Dimethylnaphthalene (2,6-DMN) is one of the crucial intermediates for the synthesis of polybutylenenaphthalate and polyethylene naphthalate (PEN). The complex synthesis procedure and the high cost of 2,6-DMN production significantly reduce the commercialisation of PEN even though PEN demonstrates superior properties compared with polyethylene terephthalate. 2,6-DMN can be produced by methylation of 2-methylnaphthalene (2-MN) and/or naphthalene, disproportionation of 2-MN, and/or isomerisation of dimethylnaphthalenes (DMNs). In this study, synthesis of 2,6-triad DMN isomers consisting of 2,6-DMN, 1,6-DMN, and 1,5-DMN have been investigated with the disproportionation of 2-MN over unmodified and Zr-modified mesoporous MCM-41 zeolite catalysts. In contrast to other DMN isomers, both 1,5-DMN and 1,6-DMN can be effectively isomerised to be profitable 2,6-DMN. The disproportionation of 2-MN experiments were carried out in a catalytic fixed-bed reactor in the presence of 1 g of catalyst at a temperature range of 350–500 °C and weight hourly space velocity between 1 to 3 h?1. The results demonstrated that mesoporous MCM-41 zeolite catalyst has a selective pore shape for 2,6-triad DMN isomers, which may allow a decrease in the production cost of 2,6-DMN. Additionally, 2,6-DMN was successfully synthesised by the disproportionation of 2-MN over MCM-41 zeolite catalyst. Furthermore, both the conversion of 2-MN and the selectivity of 2,6-DMN were considerably enhanced by the Zr impregnation on MCM-41.  相似文献   

2.
HZSM—5沸石内外表面酸,孔大小和择形催化性能的研究   总被引:3,自引:1,他引:3  
用吡啶、2,4-二甲基喹啉及NH_3吸附的TPD法测定了HZSM-5沸石的内、外表面酸量和酸分布,用环己烷吸附速度和吸附量表征孔大小,以乙苯歧化和对二乙苯异构化作研究择形催化反应.结果表明,HZSM-5外表面酸约占总酸量的20%,内、外表面酸均为非均匀分布.强酸位是对二乙苯和乙苯裂化的活性中心,而对歧化和异构化反应生成对位异构体的选择性影响不大.间二乙苯主要在内表面酸中心上生成,而对二乙苯在外表面酸位上异构化不是主要途径.对位选择性的提高与环己烷吸附速度减小有很好的对应关系,而与酸量变化关系不大.虽然中强和弱酸位对对位选择有一定影响,但影响对位选择性的主要因素是沸石的孔径大小.  相似文献   

3.
The conversion of 1,2,4-trimethy]benzene (1,2,4-TMB) over HY zeolite was studied at atmosoheric pressure and 200–300 °C by using a fixed-bed, integral-flow reactor. The types and initial selectivities of various products were obtained from plots of product selectivity according to the time-on-stream theory. The primary reaction included the isomerization and the disproportionation; the former led to the simultaneous formation of 1,2.3- and 1,3,5-TMB whereas the latter produced all isomers of xylene and tetramethylbenzene. The relative initial rate of disproportionation to isomerization decreased from 12.6 at 200 °C to 5.47 at 300 °C. The activation energies for the primary reactions were estimated and compared with those in the reaction of 1,2,3-TMB.  相似文献   

4.
Despite their vital roles in the catalytic cycle for toluene disproportionation, diphenylmethane (DPM)-type compounds have never been directly detected or proved to be true reaction intermediates from experimental techniques. In this report, we provide unprecedented insights into the DPM-mediated reaction mechanism, by demonstrating the build-up of DPM species inside the zeolite pores and following their decomposition. It can be stated that, despite their bulkiness, (di)methylated DPM species may indeed be formed at high concentrations in the ZSM-5 channels when toluene is reacted. The dimethyl-DPM species are unstable when present in the zeolite voids and decompose under a concomitant evolution of xylene at 200 degrees C.  相似文献   

5.
ZSM-5分子筛是合成三聚甲醛的有效催化剂。本工作通过XRF、XRD、SEM、NH3-TPD、Py-FTIR和27Al MAS NMR等手段对一系列不同SiO2/Al2O3物质的量比的ZSM-5分子筛催化剂进行了表征,研究了ZSM-5分子筛中Brønsted酸中心和Lewis酸中心对其甲醛合成三聚甲醛催化性能的影响。结果表明,SiO2/Al2O3物质的量比为250的ZSM-5分子筛具有合适的Brønsted酸中心用于催化甲醛缩聚为三聚甲醛的反应,同时其Lewis酸中心量极少,可有效抑制Cannizzaro或Tishchenko等副反应,提高三聚甲醛的选择性,因而具有最佳的合成三聚甲醛催化性能。寿命实验评价结果显示,SiO2/Al2O3物质的量比为250的ZSM-5分子筛具有良好的催化稳定性,单程寿命长达114 h,并且可通过550℃焙烧再生恢复其催化活性。  相似文献   

6.
The synthesis, crystal structure, characterization, and catalytic properties of the novel medium-pore zeolite TNU-9 (framework type TUN), one of the most crystallographically complex zeolites known to date, are described. TNU-9 was found to crystallize under hydrothermal conditions at the expense of a lamellar precursor over a very narrow range of SiO(2)/Al(2)O(3) and NaOH/SiO(2) ratios and in the presence of 1,4-bis(N-methylpyrrolidinium)butane and Na+ ions as structure-directing agents. A combination of molecular modeling and Rietveld refinement using synchrotron powder diffraction data confirms the proposed topology of as-made TNU-9 and suggests three or possibly four different sites for the organic within the complex pore structure. The proton form (H-TNU-9) of this new medium-pore zeolite exhibits exceptionally high hydrothermal stability, as well as very strong acidity. When compared to H-ZSM-5, H-MCM-22, H-mordenite, and H-Beta, H-TNU-9 displays unique shape selectivities for the acid-catalyzed reactions of monoaromatic hydrocarbons such as the disproportionation of toluene and the isomerization and disproportionation of m-xylene. In particular, for the isomerization of m-xylene, the ratio of isomerization to disproportionation increases steadily to values in excess of 50 with prolonged time on stream and a high p/o xylene ratio is observed in the products, achieving a value of ca. 6 after only a short time on stream. These results are rationalized on the basis of the unique pore topology of TNU-9.  相似文献   

7.
The reaction of 1,2,3-trimethylbenzene (1,2,3-TMB) over HY zeolite was investigated in a fixed-bed flow reactor at 200-300 °C under atmospheric pressure. The reaction products include toluene, pentamethylbenzene and isomers of xylene, 1,2,3-TMB and tetramethylbenzene. Based on the time-on-stream theory, the types and initial selectivities of these products were determined from plots of product selectivity. 1,2,4-TMB is initially produced from 1,2,3-TMB via isomerization whereas o-xylene, m-xylene, 1,2,3,4- and 1,2,3,5-tetramethylbenzene were primarily formed by disproportionation of 1,2,3-TMB. Isomerization and disproportionation obeyed first- and second-order kinetics, respectively; both reactions proceeded via a carbonium ion mechanism with the former occurring by methyl transfer on the benzene ring whereas the latter proceeded through the diphenylmethane transition state. The activation energies are 31.6 and 37.2 kJ mol?1 for isomerizaion and disproportionation, respectively.  相似文献   

8.
在不同条件下用各种硅改性剂对ZSM-5沸石分子筛进行改性,并将其用于催化乙苯歧化生成对二乙苯的反应。实验结果表明,在合适条件下用SiCl_4对ZSM-5改性后,可以获得高性能形选催化剂。硅改性可以有效地消除催化剂外表面酸中心,并能对分子筛孔道进行微调。根据反应结果和反应物在催化剂中的扩散系数判断,当改性后催化剂的孔道半径与NaZSM-S沸石孔道半径相近时,其催化选择性最佳。  相似文献   

9.
Herein we communicate the first time observation of an Au(II) complex stabilized in a zeolite Y supercage, as evidenced by electron spin resonance (ESR); confinement in the zeolite pores obviously stabilizes this unusual oxidation state and prevents it from undergoing disproportionation.  相似文献   

10.
Carbon materials have been prepared using zeolite 13X or zeolite Y as template and acetonitrile or ethylene as carbon source via chemical vapor deposition (CVD) at 550-1000 degrees C. Materials obtained from acetonitrile at 750-850 degrees C (zeolite 13X) or 750-900 degrees C (zeolite Y) have high surface area (1170-1920 m(2)/g), high pore volume (0.75-1.4 cm(3) g(-1)), and exhibit some structural ordering replicated from the zeolite templates. Templating with zeolite Y generally results in materials with higher surface area. High CVD temperature (> or =900 degrees C) results in low surface area materials that have significant proportions of graphitic carbon and no zeolite-type structural ordering. The nitrogen content of the samples derived from acetonitrile varies between 5 and 8 wt %. When ethylene is used as a carbon precursor, high surface area (800-1300 m(2)/g) materials are only obtained at lower CVD temperature (550-750 degrees C). The ethylene-derived carbons retain some zeolite-type pore channel ordering but also exhibit significant levels of graphitization even at low CVD temperature. In general, the carbon materials retain the particle morphology of the zeolite templates, with solid-core particles obtained at 750-850 degrees C while hollow shells are generated at higher CVD temperature (> or =900 degrees C). We observed hydrogen uptake of up to 4.5 wt % and 45 g H(2)/L (volumetric density) at -196 degrees C and 20 bar for the carbon materials. The hydrogen uptake was found to be dependent on surface area and was therefore influenced by the choice of zeolite template and carbon source. Zeolite Y-templated N-doped carbons had the highest hydrogen uptake capacity. Gravimetric and volumetric methods gave similar uptake capacity at 1 bar (i.e., 1.6 and 2.0 wt % for zeolite 13X and Y-templated N-doped carbons, respectively). Our findings show that zeolite-templated carbons are attractive for hydrogen storage and highlight the potential benefits of functionalization (nitrogen-doping).  相似文献   

11.
唐颐  陆璐  高滋 《物理化学学报》1994,10(6):514-520
详细研究了用Si(OCH_3)_4化学蒸气沉积法(C.V.D.)精细调节丝光沸石孔口尺寸的方法,制备了一系列孔口尺寸不同的SiHM沸石,并对这些样品的吸附性能、酸性质和择形催化作用进行了考察.结果表明,通过Si(OCH_3)_4C.V.D.方法制备的孔口尺寸各异的SiHM沸石,内表面酸性质保持不变;将其用于甲苯歧化反应,对位选择性明显增加,在相近转化率条件下,二甲苯产物中对二甲苯的摩尔分数可提高到0.40以上;但对邻二甲苯异构化反应,由于反应不是单纯由反应产物扩散控制,它们的对位选择性并无明显改善.  相似文献   

12.
In this study, FTIR spectroscopy and solid-state magic angle spinning (MAS) NMR were used to investigate the adsorption and thermal reaction of the nerve gas simulant dimethyl methylphosphonate (DMMP) in nanocrystalline NaY with a crystal size of approximately 30 nm. DMMP adsorbs molecularly in nanocrystalline NaY at 25 degrees C. Gas-phase products of the reaction of DMMP and oxygen in nanocrystalline NaY at 200 degrees C were monitored by FTIR spectroscopy and determined to be carbon dioxide (major product), formaldehyde, and dimethyl ether. In the presence of water, the thermal reaction of DMMP in nanocrystalline NaY at 200 degrees C yielded methanol (major product), carbon dioxide, and dimethyl ether. When the thermal reaction of DMMP in nanocrystalline NaY at 200 degrees C was conducted in the presence of water and oxygen, the predominant products were methanol and carbon dioxide. Hydroxyl sites located on the external zeolite surface were consumed during the DMMP thermal reactions as monitored by FTIR spectroscopy and were therefore determined to be the active sites in this reaction. 31P solid-state MAS NMR experiments were used to identify the surface-bound phosphorus complexes. The reactivity per gram of zeolite was comparable to other recently studied metal oxides such as MgO, Al2O3, and TiO2, and was found to have comparable, if not higher reactivity. Future improvements in reactivity may be achieved by incorporating a reactive transition metal ion or metal oxide nanocluster into the nanocrystalline NaY to enhance reaction rates and to achieve complete reaction of DMMP.  相似文献   

13.
由NH4Y分子筛制备了HY分子筛,运用N2吸附、NH3-TPD和Py-FTIR等手段表征HY分子筛的物化性能;采用智能重量分析仪(IGA)方法研究了甲基噻吩(2-甲基噻吩、3-甲基噻吩)在HY分子筛上的吸附-脱附行为;采用程序升温脱附-质谱(TPD-MS)联用手段研究了甲基噻吩在HY分子筛上的转化行为。结果表明,在200 ℃下 2-甲基噻吩和3-甲基噻吩在HY分子筛中的强B酸上发生强化学吸附作用,与B酸结合后生成了甲基噻吩的碳正离子结构进而发生了歧化反应、脱烷基反应以及裂化反应;与2-甲基噻吩不同的是,3-甲基噻吩与HY通过一定的氢转移反应生成了3-甲基四氢噻吩,且200 ℃吸附条件下3-甲基噻吩比2-甲基噻吩更容易发生裂化反应。  相似文献   

14.
Toluene was methylated with methanol and disproportionated using catalysts containing different Pt contents (0.2, 0.4 and 0.6%) supported on H‐ZSM‐5 or H‐mordenite (H‐M) zeolites in a fixed‐bed flow‐reactor operated atmospherically at temperatures of 300–500 °C in a flow of hydrogen. Platinum dispersion in the zeolite supports and acid sites strength distribution were evaluated using hydrogen chemisorption (1:1 stoichiometry) and ammonia temperature programmed desorption (TPD) in a differential scanning calorimeter (DSC). Toluene methylation was much faster on all catalysts than toluene disproportionation (DISP). Both reactions were more accelerated using H‐ZSM‐5 containing catalysts than H‐M containing catalysts. The yield of xylenes, and in particular para‐xylene, was significantly influenced by the yield of trimethylbenzenes (TMBs) in product. The selectivities for para‐, ortho‐ and meta‐xylenes production were found largely dependent on the Pt content in the catalysts, particularly when supported on H‐ZSM5‐zeolite. However, using Pt/H‐M catalysts, these selectivities were not strictly controlled by Pt content in the catalysts.  相似文献   

15.
The alkylation of ethylbenzene with methanol on various zeolites has been studied at atmospheric pressure, 300–500 °C and with ethylbenzene/methanol = 3 mol/mol in a fixed-bed, integral-flow reactor. The catalytic activity decreased in the order HZSM-5 > HY > HM. The optimum conditions for the formation of ethyltoluene were HY zeolite, 400 °C and W/F = 4.1 g-cat h/g-feed. The catalyst decay rate increased in the order HZSM-5 << HY < HM; coking of the zeolite increased the fraction of para-isomer in the ethyltoluenes. On HZSM-5 modified with alkaline earth metal, the conversion of ethylbenzene decreased with concomitantly increased selectivity of para-ethyltoluene especially evident in cases of magnesium and calcium (> 93% para-selectivity). These results are interpreted in terms of diminution of both the strong acid sites and the pore size of zeolites. For the reaction on HY at 400 °C, the reaction paths were determined; the ethylbenzene reacted via alkylation, disproportionation and dealkylation with initial selectivities 84.7%, 13.1% and 2.2%, respectively.  相似文献   

16.
Teo BK  Li CP  Sun XH  Wong NB  Lee ST 《Inorganic chemistry》2003,42(21):6723-6728
It was demonstrated that zeolite can be used as a pseudo-template to grow very fine and uniform silicon nanostructures via disproportionation reaction of SiO by thermal evaporation. Three distinct types of composite nanowires and nanotubes of silicon and silica were grown on the surfaces of zeolite Y pellets. The first type is formed by an ultrafine crystalline silicon nanowire sheathed by an amorphous silica tube (a silicon nanowire inside a silica nanotube). The second type is formed by a crystalline silicon nanotube filled with amorphous silica (a silicon nanotube outside a silica nanowire). The third type is a biaxial silicon-silica nanowire structure with side-by-side growth of crystalline silicon and amorphous silica. These silicon nanostructures exhibit unusually intense photoluminescence (in comparison to ordinary silicon nanowires).  相似文献   

17.
Infrared spectra produced by adsorbing, by evacuating and by readsorbing NO on CaHY-type zeolite were examined. The absorption peaks were identified by comparing the spectra produced by adsorbing and by evacuating N2O and NO2. Based upon the experimental evidence, an eight-step mechanism was proposed for the behavior of NO on CaHY-type zeolite. A mechanistic model of the disproportionation reaction of NO was deduced from the variation of the spectra with time.  相似文献   

18.
MCM-22型分子筛的合成及其用于生产异丙苯的催化性能   总被引:5,自引:0,他引:5  
MCM-22 molecular sieve was first reported by Rubin et al[1] in Mobil Company.Similar to ZSM-5 zeolite, MCM-22 belongs to the category of medium pore zeolites.However, it possesses unique structural features[2] that have not been demonstrated before. The structure of MCM-22 was resolved by Mobil scientists using high resolution microscopy and X-ray diffraction analysis. It is found that MCM-22 consists of two independent and non-interconnecting channel systems, each accessible through 10-ring apertures. One of these pore systems is composed of uniform circular 10-ring pores about 0.6 nm. The other is composed of 12-ring egg-shaped supercages with inner free diameter of 0.71 nm and inner height of 1.82 nm. Usually the zeolite crystallizes as thin sheets or plates of stocked layers. Therefore, MCM-22 has been actively studied and this peculiar zeolite may have potential applications in the petrochemical and petroleum industries in the near future, including reactions such as disproportionation[3], catalytic cracking of hydrocarbons[4], aromatic/ethylene alkylation[5], isoalkane/olefins[6] and methanol/olefins alkylation[7] etc.  相似文献   

19.
The existence of carbenium ion species is assumed in many zeolite catalysis mechanisms. Using computational techniques that include environmental effects, a benzenium-type carbenium ion is identified in zeolite catalysts for the first time. Localization of nearby transition states indicate that this species may play an important role as an intermediate in the bimolecular m-xylene disproportionation reaction. The barrier to back-donation of the proton from the benzenium ion is at least 50 kJ/mol, meaning that this species may be spectroscopically observable. An additional carbenium ion intermediate, formed by abstraction of a hydride from m-xylene, is also predicted. The stability of this second new carbenium ion suggests that aromatic-based carbenium ions are likely to be intermediates in many zeolite-catalyzed reactions. Two types of fundamentally different fully periodic calculations support the stability predictions.  相似文献   

20.
High activity and selectivity of the hierarchical H-Ymmm zeolite in the synthesis of practically important pyridines (by interaction of C2–C4 alcohols with formaldehyde and ammonia, cyclocondensation of acetaldehyde and propanal with ammonia), dialkyl quinolines (by reaction of aniline with aldehydes) and alkyl dihydroquinolines (by reaction of aniline with ketones- acetone, acetophenone) were revealed in the research.The advantages of the micro-meso-macroporous H-Ymmm zeolite over the microporous H-Y zeolite in the synthesis of pyridines and quinolines were demonstrated. In the products formed by the reaction of ethanol with formaldehyde and ammonia, picolines (up to 63%) and lutidine are predominant in H-Ymmm, Pb-H-Ymmm and Fe-H-Ymmm zeolites. The interaction of n-propanol (n-butanol) with formaldehyde and ammonia in the presence of H-Ymmm zeolite with high selectivity produced 3,5-lutidine (up to 90%) or 3,5-diethylpyridine (85%). H-Ymmm zeolite makes it possible to prepare 2-methyl-5-ethylpyridine with 87% selectivity (reaction of acetaldehyde with ammonia) and 2-ethyl-3,5-dimethylpyridine with 58% selectivity (reaction of propanal with ammonia).The synthesis of dialkylquinolines and dialkyltetrahydroquinolines with a total selectivity of 65–73% by the interaction of aniline with C3–C5 aldehydes has been carried out. The dihydroquinoline derivatives with the selectivity of up to 70% have been synthesized by the reaction of aniline with ketones (acetone, acetophenone).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号