首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The near-field instability of variable property jets of air, CO2, and He, issued into the ambient air, has been investigated experimentally within normal gravity and microgravity fields. The density ratio to the ambient air is unity for air jets, more than unity (1.53) for CO2 jets, and less than unity (0.14) for He jets, respectively. The ratio of kinematic viscosity to the ambient air is unity for air jets, less than unity for CO2 jets (0.53), and more than unity for He jets (7.75), respectively. The jet velocity is varied from 0.4 to 1.8 m/s and then the jet Reynolds number varies from 60 for Helium jet to 2,000 for CO2 jet, while the Richardson number varies from negative to positive values. The motion of the jet is visualized using a laser tomographic method and recorded by a high-speed digital video camera with 250 frames/s. The result shows that the instability of the jet is intensified when Re > 800 while it is weakened at Re < 800 at the microgravity field, indicating that the viscosity plays an important role in weakening the instability. Under a normal gravity field, the buoyancy also becomes important. In order to quantify the instability criteria, the quantity of the instability is introduced, which consists of the Kelvin–Helmholtz instability, buoyancy effect and viscous effect. When the ratio of the sum of Kelvin–Helmholtz and buoyancy forces to viscous force exceeds a certain value, around 12 in the present study, the jet becomes unstable even when Re < 800. These results reveal that the instability of variable property jets is influenced by the Kelvin–Helmholtz instability, the viscous effect and the buoyancy effect.  相似文献   

2.
The noise generated by supersonic plumes is of growing concern given the enormous peak noise intensity radiated by tactical aircraft engines. A key component of this noise is the enhanced radiation of mixing noise caused by large scale eddies convecting supersonically relative to the surrounding quiescent medium. As very little data exist for eddy convection in high Reynolds number, supersonic plumes, our current ability to develop concepts that alter compressible eddy convection is limited. Herein we present new experimental data of eddy convective wavespeeds in the developing shear layer of supersonic heated jets. A new scaling of the wavespeed in radial similarity coordinates is proposed which takes into account the influence of the ratio of static densities between the jet and ambient streams. In particular, we observe a structural change in wavespeed spectra at the end of the potential core—in addition to high turbulence levels, the potential core breakdown region can have enhanced eddy wavespeeds, increasing noise radiation efficiency. The results provide a first examination of the interplay of density ratio effects and the dynamic breakdown process of the potential core in supersonic jets—physics integral to the noise generation process.  相似文献   

3.
Generation of hypersonic liquid fuel jets accompanying self-combustion   总被引:2,自引:0,他引:2  
Aerodynamic behavior of pulsed hypersonic light oil jets injected at 2 km/s and 3 km/s is presented. Auto-ignition and combustion of the fuel during the injection process were visualized. The combustion around the disintegrating jet was enhanced by liquid atomization created by the very high injection pressure as well as the interfacial instability of the hypersonic jet. The jets were injected into air at low pressure and also that premixed with helium and air. It was found that the combustion was reduced in both cases despite the higher jet speed and the increased gas pressure. Received 5 November 1998 / Accepted 24 February 1999  相似文献   

4.
The present investigation reports on the near field behavior of gas jets in a long confinement and points out the differences between this type of jet flow and those of free jets and jets in a short confinement.The jet, with a diameter of 8.73 mm, is aligned concentrically with a tube of 125 mm diameter; thus giving a confinement area ratio of 205. The arrangement forms part of the test section of an open-jet wind tunnel and this gives a confinement length-to-jet diameter ratio of 1,700. Experiments are carried out with carbon dioxide, air and helium/air jets at different jet velocities. Mean velocity and turbulence measurements are made of the jet near field using a one-color, one-component laser doppler velocimeter operating in the forward scatter mode. In addition, the turbulent shear field of an air jet is examined in more detail using hot-wire anemometers.In view of the long confinement, the presence of the jet is not being felt immediately at the tunnel exit. Consequently, the air column inside the tunnel is first compressed by the jet and then slowly pushed out of the tunnel. This behavior causes the jet to spread rapidly and to decay quickly. As a result, an equilibrium turbulence field is established in the first two diameters of the jet. This equilibrium field bears striking similarity to that found in self-preserving, turbulent free jets and jets in short confinement and is independent of jet fluid densities and velocities. In terms of these characteristics, the near field of jets in a long confinement is very different from that found in free jets and jets in short confinements.  相似文献   

5.
An optical deflectometry system is used to provide unique space–time correlation measurements at two positions separated by varying axial distances within a high-speed jet shear layer. The measurements were made for both pure air and for helium/air mixture jets at Mach numbers M=0.9 and M=1.5. The jets issue from round nozzles and the sensing volumes at the two measurement positions consist of small light filaments along spanwise lines that are tangential to the annular jet shear layer. Applying this technique to obtain measurements detailing the level of correlation, spectral content, and convection velocity for jet flows in these flow regimes near the end of the potential core is particularly important in the understanding and prediction of jet noise. Measurements near the end of the potential core along the jet lip line exhibit distinct cross-correlation curves for the pure air jet cases. However, helium/air mixture jets display much lower levels of correlation and little evidence of large-scale structure in the measured spectra. It is believed that the thick visual density gradients dominated by smaller scales throughout the shear layer of the helium/air mixture jets effectively mask the large-scale structure, thus, reflecting a limitation of this optical deflectometer. Finally, a decrease in normalized convection velocity with helium addition is observed.  相似文献   

6.
A single-shot laser Mie scattering technique is used to measure the instantaneous radial distributions of seed particles in the early development zone of turbulent jets with various bulk densities issuing into a slow coflowing air stream. Instantaneous radial profiles of mixture fraction are derived from the measured distributions with either the jet fluid or only the coflow air seeded, depending on the investigated zone. Radial gradients and autocorrelation profiles are analyzed to study the scalar dissipation and the mixing length scale respectively. Self-similar behaviour is investigated by plotting the centreline scalar decay as a function of a reduced abscissa, which accounts for the axial variation of the jet density in its early development. As the density is simultaneously derivable from the mixture fraction data, direct comparisons between Favre and Reynolds averaged values are obtained which show very significant differences in the near field.  相似文献   

7.
The present study deals with the local linear instability of axisymmetric coaxial jets with a duct wall separating the two streams. The flow is assumed to be locally parallel, inviscid and incompressible. The objective of the work is to understand how the various parameters describing this flow geometry (i.e. boundary layers thicknesses at the exit, velocity ratio, wall thickness) may influence the instability of the flow and, in particular, the convective/absolute instability transition. A specific family of profiles is chosen for the modelling of the mean undisturbed flow and a spatial stability analysis is performed in order to identify the unstable modes and to assess how they are affected by the wake region behind the wall. An absolutely unstable mode is found, and its characteristics, depending on the velocity ratio and shear layers thicknesses, are determined. Results show that the absolute unstable mode is present only for a limited range of velocity ratios and that the corresponding frequency is almost constant if normalized with the mean velocity and wake thickness. This frequency value and the extension of the range of velocity ratios is similar to those found in the experiments on a similar geometry. Finally, a specific velocity ratio is found that maximizes the region at the jet exit for which an absolute instability behind the wall is present. This may increase the possibility for the onset of a global mode that may sustain the instability of the whole jet, enhancing considerably the mixing and entrainment characteristics between the two streams.  相似文献   

8.
9.
The near-field shear layer instabilities forming in round transverse jets of variable (reduced) densities relative to the crossflow are investigated through gas-phase experiments. Jets composed of helium and nitrogen mixtures are injected from a converging nozzle mounted flush with an injection wall into air crossflow, allowing the jet-to-crossflow density ratio S to be varied between 1.00, the equidensity case, and 0.14, at constant jet Reynolds number Re j ?=?1,800. Jet-to-crossflow momentum flux ratios J are examined in the range $\infty>J\geq5$ at incremental values of the density ratio S. The results of single-component hotwire measurements in the jet shear layer indicate that a transition to global instability likely occurs as J is brought below approximately 10, and/or as S is brought below approximately 0.45?C0.40. This observation appears to link many previous independent studies of both equidensity transverse jets and low-density free jets, which may become globally unstable under alteration of J and S, respectively. However, the dynamical character of the transition to global instability in the low-density transverse jet displays differences under independent variation of J and S, which may indicate the predominance of different modes.  相似文献   

10.
A general solution of the thermal problem for a non-self-similar axisymmetric jet is determined on the basis of the multiple approach developed for problems of non-self-similar jets in ambient space [1, 2], and several problems of convective heat-transfer in simply- or doubly-connected domains are solved. The advantage of expanding the solution of the convective heat conduction equation in eigenfunctions of the problem is demonstrated. As an illustration, the solutions for a thermal dipole and quadrupole and for a jet flow in a heated tube are presented. The corresponding solutions are also obtained for a turbulent jet in ambient space. The most favorable heat-exchange regime for a jet in a heated tube is predicted on the basis of the particular behavior of the eigenfunctions of the thermal problem.Novosibirsk. Translated from Izvestiya Rossiiskoi Akademii Nauk, Mekhanika Zhidkosti i Gaza, No. 1, pp. 40–46, January–February, 1996.  相似文献   

11.
Near-field mixing characteristics of horizontally issuing jets, alternatively positively and negatively buoyant, are explored. The cross-sectional mass fraction of a buoyant horizontal jet consisting of helium flowing into ambient air is measured using a non-intrusive technique, filtered Rayleigh scattering, for Reynolds numbers ranging from 50 to 1,200, Froude numbers ranging as low as 0.71, and Schmidt numbers on the order of unity for all tests. Several corresponding experiments were carried out using carbon dioxide in place of helium in order to determine whether the direction of the buoyancy changes the characteristic shape of the jet cross-section. Consistent with the literature, mixing rates were consistently higher on the side of the jet where instability, due to density stratification, was present. At jet Froude numbers ranging between 1.5 and approximately 3, the jet cross-section takes a shape consistent with a single plume of fluid being ejected from the core in a vertical direction—upward for a jet with positive buoyancy and downward for a jet with negative buoyancy. Remarkably, for Froude numbers less than unity, the distortion of the jet is quite different in that two separate plumes emanate from each side of the jet while ejection from the center is suppressed. Both the positively and negatively buoyant jet cross-sections exhibited this trait, suggesting that the mechanism that determines the cross-sectional shape of the jet core is only mildly influenced by centripetal effects brought about by streamline curvature. The location of the jet centroid at varied streamwise locations was computed from the mass fraction data, yielding jet trajectory.  相似文献   

12.
The temporal instability behavior of a viscoelastic liquid jet in the wind-induced regime with axisymmetric and asymmetric disturbances moving in an inviscid gaseous environment is investigated theoretically. The corresponding dispersion relation between the wave growth rate and the wavenumber is derived. The linear instability analysis shows that viscoelastic liquid jets are more unstable than their Newtonian counterparts, and less unstable than their inviscid counterparts, for both axisymmetric and asymmetric disturbances, respectively. The instability behavior of viscoelastic jets is influenced by the interaction of liquid viscosity and elasticity, in which the viscosity tends to dampen the instability, whereas the elasticity results in an enhancement of instability. Relatively, the effect of the ratio of deformation retardation to stress relaxation time on the instability of viscoelastic jets is weak. It is found that the liquid Weber number is a key measure that controls the viscoelastic jet instability behavior. At small Weber number, the axisymmetric disturbance dominates the instability of viscoelastic jets, i.e., the growth rate of an axisymmetric disturbance exceeds that of asymmetric disturbances. When the Weber number increases, both the growth rate and the instability range of disturbances increase drastically. The asymptotic analysis shows that at large Weber number, more asymmetric disturbance modes become unstable, and the growth rate of each asymmetric disturbance mode approaches that of the axisymmetric disturbance. Therefore, the asymmetric disturbances are more dangerous than that of axisymmetric disturbances for a viscoelastic jet at large Weber numbers. Similar to the liquid Weber number, the ratio of gas to liquid density is another key measure that affects the viscoelastic jet instability behavior substantially.  相似文献   

13.
The spatial–temporal instability behavior of a viscous liquid sheet with temperature difference between the two surfaces was investigated theoretically. The practical situation motivating this investigation is liquid sheet heated by ambient gas, usually encountered in industrial heat transfer and liquid propellant rocket engines. The existing dispersion relation was used, to explore the spatial–temporal instability of viscous liquid sheets with a nonuniform temperature profile, by setting both the wave number and frequency complex. A parametric study was performed in both sinuous and varicose modes to test the influence of dimensionless numbers on the transition between absolute and convective instability of the flow. For a small value of liquid Weber number, or a great value of gas-to-liquid density ratio, the flow was found to be absolutely unstable. The absolute instability was enhanced by increasing the liquid viscosity. It was found that variation of the Marangoni number hardly influenced the absolute instability of the sinuous mode of oscillations; however it slightly affected the absolute instability in the varicose mode.  相似文献   

14.
An experimental study on the mixing of two plane, unventilated, parallel jets reveals an instability characterized by sinuous flapping of the jets and enhanced mixing of the jets with the ambient fluid. The frequency and amplitude of the instability is shown to be a function of the jets spacing and momentum flux ratios, with the maximum mixing occurring for cases with matched momentum flux. When the momentum flux of the two jets is mismatched by as much as a factor of three, the flow becomes steady. Schlieren flow visualization and hot-wire anemometry demonstrate and quantify the large-scale mixing. The instability has a strong frequency and amplitude dependence on the momentum ratio of the jets. The Strouhal number is also found to decrease with the spacing between the jets. The instability described provides a means to passively control the jet mixing with the ambient.  相似文献   

15.
Effect of initial conditions on the near-field development of a round jet   总被引:3,自引:0,他引:3  
This paper examines the effects of using different grids, placed at the nozzle exit plane, on the subsequent development of a subsonic round air jet. Modifications to the initial development of the jet are achieved in a passive manner by placing different grids at the nozzle exit plane. Time-averaged statistics of the velocity, including spectra, are combined with a numerical linear instability investigation. The grids suppress the initial shear layer instability whereas they damp the jet column instability. As a result, the streamwise decay and radial spreading of the perturbed jets are reduced. The instability analysis yields realistic values for the fastest growing instability frequency but incorrect growth rates.  相似文献   

16.
熔喷双槽形喷嘴气体射流流场初探   总被引:1,自引:0,他引:1  
陈廷 《力学季刊》2000,21(4):492-496
在熔喷非织造布加工中,气体射流作为工作介质使聚合物熔体实现拉伸,气体射流流场的研究对熔喷气流拉抻数学模型研究非常重要。熔喷双槽形喷嘴形成的流场可以看作两股平面射流的合成。从单个点涡的性质出发,研究了涡偶的性质和涡偶代替射流的可行性。研究表明,在喷丝孔轴线附近,涡偶和射流的速度分布趋势相同,且有比较相近的速度分布,从而说明以涡偶代替射流是可行的。在此基础上,用两个涡偶分别代替两股射流,然后进行合成,推导出两股射流合成后速度分布的理论公式,该公式的计算结果与实验结果吻合较好。将该公式引入熔喷气流拉伸数学模型,预测出的纤维直径与采用经验公式时的预测结果几乎完全相同。结果表明,应用涡偶代替射流推导出的气流速度分布公式能够较好地描述熔喷双槽形喷嘴气体射流流场,可以用于完善熔喷气流拉伸数学模型。  相似文献   

17.
Vortical structures formed in evolving jets are important in applications such as fuel injection in diesel engines and fuel leaks. When the jet fluid is different from the ambient fluid, the buoyancy can play an important role in determining the jet flow structure, and hence, the entrainment and fluid mixing processes. In the present study, a jet of helium injected in air is investigated, with emphasis placed on delineating the buoyancy effects on vector–scalar fields during the starting phase. We utilize a computational model, previously validated to predict the flow field of low-density gas jets. The model incorporates finite volume approach to solve the transport equation of helium mass fraction coupled with conservation equations of mixture mass and momentum. Computations were performed for a laminar jet to characterize the advancing jet front, and to capture the formation and propagation of vortex rings and the related pinch-off process. Results show significant effects of buoyancy on jet advancement, as well as on vorticity and helium concentration in the core of the vortex rings.  相似文献   

18.
The influence of current on the absolute instability of a capillary jet of nonviscous weakly conducting fluid is considered. A relation between the Weber and Alfven numbers that sets off regions of absolute and convective instability is obtained.Moscow. Translated from Izvestiya Rossiiskoi Akademii Nauk, Mekhanika Zhidkosti i Gaza, No. 4, pp. 179–182, July–August, 1995.  相似文献   

19.
The compressible spreading rates of two supersonic coaxial jets were studied experimentally. The center jet had a fully-expanded Mach number of 3, and the outer jet of M = 1.8. The geometries of the center jet were circular and rectangular with two configurations, both with a 3∶1 aspect-ratio. The convective Mach numbers were varied in the range between 0.25 < M c< 2.25. This was accomplished by varying the density ratio between the center jet and the coaxial jet, as well as the velocity ratio. The experimental compressible spreading rate was determined using Schlieren photography and total-pressure measurements. The spreading rate of the center circular jet decreased with increasing convective Mach number until it reached a constant value of 0.2 to 0.3 of the incompressible spreading rate for M c>1.4. The rectangular jets exhibited a similar drop, at the same range of M c, but their spreading rate was higher relative to the circular jet in the entire convective Mach number range.  相似文献   

20.
The purpose of this investigation is to study the effect of the orifice geometry on liquid breakup. In order to develop a better understanding of the liquid jet breakup, investigations were carried out in two steps—study of low-pressure liquid jet breakup and high-pressure fuel atomization. This paper presents the experimental investigations conducted to study the flow behavior of low-pressure water jets emanating from orifices with non-circular geometries, including rectangular, square, and triangular shapes and draws a comparison with the flow behavior of circular jets. The orifices had approximately same cross-sectional areas and were machined by electro-discharge machining process in stainless steel discs. The liquid jets were discharged in the vertical direction in atmospheric air at room temperature and pressure conditions. The analysis was carried out for gage pressures varying from 0 to 1,000 psi (absolute pressures from 0.10 to 6.99 MPa). The flow behavior was analyzed using high-speed visualization techniques. To draw a comparison between flow behavior from circular and non-circular orifices, jet breakup length and width were measured. The flow characteristics were analyzed from different directions, including looking at the flow from the straight edges of the orifices as well as their sharp corners. The non-circular geometric jets demonstrated enhanced instability as compared to the circular jets. This has been attributed to the axis-switching phenomenon exhibited by them. As a result, the non-circular jets yielded shorter breakup lengths as compared to the circular jets. In order to demonstrate the presence of axis-switching phenomenon in square and triangular jets, the jet widths were plotted along the axial direction. This technique clearly demonstrated the axis switching occurring in square and triangular jets, which was not clearly visible unlike the case of rectangular jets. To conclude, non-circular geometry induces greater instabilities in the liquid jets, thereby leading to faster disintegration. Thus, non-circular orifice geometries can provide a cheaper solution of improving liquid breakup and thus may enhance fuel atomization as compared to the precise manufacturing techniques of drilling smaller orifices or using costly elevated fuel injection pressure systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号