首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The separation of proteins by internally and externally generated pH gradients in chromatofocusing on ion‐exchange columns is a well‐established analytical method with a large number of applications. In this work, a stoichiometric displacement model was used to describe the retention behavior of lysozyme on SP Sepharose FF and a monoclonal antibody on Fractogel SO3 (S) in linear salt and pH gradient elution. The pH dependence of the binding charge B in the linear gradient elution model is introduced using a protein net charge model, while the pH dependence of the equilibrium constant is based on a thermodynamic approach. The model parameter and pH dependences are calculated from linear salt gradient elutions at different pH values as well as from linear pH gradient elutions at different fixed salt concentrations. The application of the model for the well‐characterized protein lysozyme resulted in almost identical model parameters based on either linear salt or pH gradient elution data. For the antibody, only the approach based on linear pH gradients is feasible because of the limited pH range useful for salt gradient elution. The application of the model for the separation of an acid variant of the antibody from the major monomeric form is discussed.  相似文献   

2.
The elution mechanism of sodium sulfonates on both Deltabond cyanopropyl and bare silica stationary phases with an isocratic mobile phase composed of methanol-modified CO2 wherein an ammonium salt additive was dissolved in the methanol has been studied. The presence of the additive was crucial concerning elution of the sulfonate salts. Solid state 29silicon nuclear magnetic resonance spectroscopy provided some insight concerning the interaction of the mobile phase additive with the silica-based stationary phase. Computational calculations concerning the charge distribution on various ammonium salts were performed in an effort to explain the elution behavior. Ammonium ions are believed to deactivate available silanol sites on both phases. In addition, ammonium ion is speculated to interact with the cyano groups on the bonded phase. For concentrations of additive greater than 2 mM, stationary phase coverage of ammonium ion is anticipated to exceed one monolayer for both bare and bonded silica. The acetate counter-ion is thought to facilitate elution of the anionic sulfonates from the positively charged stationary phase in a pseudo ion exchange mechanism.  相似文献   

3.
The rapid separation of inorganic anions on short monolithic columns permanently coated with a long chained zwitterionic carboxybetaine-type surfactant is shown. The surfactant, N-dodecyl-N,N-(dimethylammonio)undecanoate (DDMAU), was used to coat 2.5, 5.0 and 10 cm long reversed-phase silica monoliths, resulting in a permanent zwitterionic exchange surface when used with aqueous based eluents. The unique structure of the surfactant results in a charge double layer structure on the surface of the stationary phase, with strong internal anionic and weak external cationic exchange groups. The dissociation of the weak external carboxylic acid group acts to shield the inner anionic exchange site, resulting in substantial effective capacity changes with eluent pH. Utilising this effect with the application of an eluent pH gradient, simultaneously combined with eluent flow-rate gradients, very rapid simultaneous separations of both weakly retained anions and strongly retained polarisable anions was possible, with up to 10-fold decreases in overall run times. Coating stability and retention times under isocratic and isofluentic eluent conditions were shown to be reproducible over >450 repeat injections, with peak efficiency values averaging 29,000 N/m for the 2.5 cm column and 42,000 N/m for the 10 cm monolithic column, again under isocratic elution conditions.  相似文献   

4.
The effect of electrostatic and hydrophobic interactions on the chromatographic behavior of biopolymers with the use of chemically bonded silica-based HPLC columns and aqueous buffered mobile phases containing neutral salts in a wide range of concentration is discussed. Two columns packed with stationary phases appositely designed for biopolymer HPLC in size exclusion and anion exchange mode, respectively, are examined. Experimental data are evaluated by plotting the measured isocratic elution volumes of several standard proteins of different isoelectric point against the salt concentration in the mobile phase. Depending on the concentration and nature of salt, both columns exhibit different domains where either sieving effect or electrostatic or hydrophobic interactions are predominant. At sufficiently low salt concentrations electrostatic interactions are predominant leading to either increasing or decreasing elution volumes depending on the sign of the charges on the stationary phase and the protein, respectively. On the other hand, at high salt concentrations of a salt with sufficiently high molal surface tension increment proteins may be retained by hydrophobic interactions.  相似文献   

5.
A stationary phase composed of silica-bonded cyclofructan 6 (FRULIC-N) was evaluated for the separation of four cyclic nucleotides, six nucleoside monophosphates, four nucleoside diphosphates, and five nucleoside triphosphates via hydrophilic interaction chromatography (HILIC) in both isocratic and gradient conditions. The gradient conditions gave significantly better separations by narrowing peak widths. Sixteen out of nineteen nucleotides were baseline separated on the FRULIC-N column in one run. Unlike other known HILIC stationary phases, there can be dual-retention mechanisms unique to this media. Traditional hydrogen bonding/dipolar interactions can be supplemented by dynamic ion interaction effects for anionic analytes. This occurs because the FRULIC-N stationary phase is able to bind certain buffer cations. The extent of the ion interaction is tunable, in comparison to stationary phases with embedded charged groups, where the inherent ionic properties are fixed. The best mobile phase conditions were determined by varying the organic modifier (acetonitrile) content, as well as salt type/concentration and electrolyte pH. The thermodynamic characteristic of the FRULIC-N column was investigated by evaluating the column temperature effect on retention and utilizing van’t Hoff plots. This study shows that there is a greater entropic contribution for the retention of nucleotide di and triphosphates, whereas there is a greater enthalphic contribution for the cyclic nucleotides with the FRULIC-N column.  相似文献   

6.
Several procedures are available for simulating and optimising separations in ion chromatography (IC), based on the application of retention models to an extensive database of analyte retention times on a wide range of columns. These procedures are subject to errors arising from batch-to-batch variability in the synthesis of stationary phases, or when using a column having a different diameter to that used when the database was acquired originally. Approaches are described in which the retention database can be recalibrated to accommodate changes in the stationary phase (ion-exchange selectivity coefficient and ion-exchange capacity) or in the column diameter which lead to changes in phase ratio. The entire database can be recalibrated for all analytes on a particular column by performing three isocratic separations with two analyte ions. The retention data so obtained are then used to derive a "porting" equation which is employed to generate the required simulated separation. Accurate prediction of retention times is demonstrated for both anions and cations on 2mm and 0.4mm diameter columns under elution conditions which consist of up to five sequential isocratic or linear gradient elution steps. The proposed approach gives average errors in retention time prediction of less than 3% and the correlation coefficient was 0.9849 between predicted and observed retention times for 344 data points comprising 33 anionic or cationic analytes, 5 column internal diameters and 8 complex elution profiles.  相似文献   

7.
8.
Detailed studies on the sorption behavior of plasmids on anion exchangers are rare compared to proteins. In this study, we systematically compare the elution behavior of plasmid DNA on three common anion exchange resins using linear gradient and isocratic elution experiments. Two plasmids of different lengths, 8 and 20 kbp, were studied and their elution characteristics were compared to a green fluorescent protein. Using established methods for determining retention characteristics of biomolecules in ion exchange chromatography lead to remarkable results. In contrast to the green fluorescent protein, plasmid DNA consistently elutes at one characteristic salt concentration in linear gradient elution. This salt concentration was the same independent of plasmid size but differed slightly for different resins. The behavior is consistent also at preparative loadings of plasmid DNA. Thus, only a single linear gradient elution experiment is sufficient to design elution in a process scale capture step. At isocratic elution conditions, plasmid DNA elutes only above this characteristic concentration. Even at slightly lower concentrations most plasmids remain tightly bound. We hypothesize, that the desorption is accompanied by a conformational change leading to a reduced number of available negative charges for binding. This explanation is supported by structural analysis before and after elution.  相似文献   

9.
以甲基丙烯酰氧乙基二甲基乙酸铵(CBMA)为功能单体,利用表面引发原子转移自由基聚合(Surface-initiated atom transfer radical polymerization, SI-ATRP)技术,将CBMA接枝到硅胶表面,得到接枝聚合物CBMA的亲水作用色谱固定相(Silica-CBMA).通过改变SI-ATRP反应体系中单体的浓度,制备了3种不同接枝量的亲水作用色谱固定相.考察了Silica-CBMA固定相对有机酸类化合物的分离性能以及流动相中pH值、盐浓度、水含量等因素对溶质保留行为的影响.结果表明,在亲水作用色谱模式下,Silica-CBMA固定相对有机酸类化合物的分离是离子交换作用与亲水作用的混合色谱模式.流动相中盐浓度增大,溶质保留减弱,符合离子交换作用特征;固定相和溶质的离子化程度受流动相pH值影响较大,pH值增大,溶质保留增强;而溶质的保留时间随流动相水含量增加而降低则是典型的亲水作用色谱特征.使用自制Silica-CBMA柱,建立了芦丁片中维生素C、芦丁含量的亲水作用色谱测定方法,操作方法简单,为强极性样品的分离测定提供了新方法.  相似文献   

10.
When facing separation problems in ion chromatography, chromatographers often lack guidelines to decide a priori if isocratic elution will give enough separation in a reasonable analysis time or a gradient elution will be required. This situation may be solved by the prediction of retention in gradient elution mode by using isocratic experimental data. This work describes the development of an ion chromatographic gradient elution retention model for fluoride, chloride, nitrite, bromide, nitrate, sulfate and phosphate by using isocratic experimental data. The isocratic elution retention model was developed by applying a polynomial relation between the logarithm of the retention factor and logarithm of the concentration of competing ions; the gradient elution retention model was based on the stepwise numerical integration of the corresponding differential equation. It was shown that the developed gradient elution retention model was not significantly affected by transferring data form isocratic experiment. The root mean squared prediction error for gradient elution retention model was between 0.0863 for fluoride and 0.7027 for bromide proving a very good predictive ability of developed gradient elution retention model.  相似文献   

11.
The ion-exchange separation of organic anions of varying molecular mass has been demonstrated using ion chromatography with isocratic, gradient and multi-step eluent profiles on commercially available columns with UV detection. A retention model derived previously for inorganic ions and based solely on electrostatic interactions between the analytes and the stationary phase was applied. This model was found to accurately describe the observed elution of all the anions under isocratic, gradient and multi-step eluent conditions. Hydrophobic interactions, although likely to be present to varying degrees, did not limit the applicability of the ion-exchange retention model. Various instrumental configurations were investigated to overcome problems associated with the use of organic modifiers in the eluent which caused compatibility issues with the electrolytically derived, and subsequently suppressed, eluent. The preferred configuration allowed the organic modifier stream to bypass the eluent generator, followed by subsequent mixing before entering the injection valve and column. Accurate elution prediction was achieved even when using 5-step eluent profiles with errors in retention time generally being less than 1% relative standard deviation (RSD) and all being less than 5% RSD. Peak widths for linear gradient separations were also modelled and showed good agreement with experimentally determined values.  相似文献   

12.
Nash MJ  Maskall JE  Hill SJ 《The Analyst》2006,131(6):724-730
Novel HPLC-ICP-MS methodologies are developed using strong anion exchange (Phenomenex SAX-SB) and weak anion exchange (Alltec HAAX) stationary phases in conjunction with a range of aqueous mobile phases to enable simultaneous separations of inorganic Sb(III), Sb(V) and organic trimethylantimony dichloride (TMSb) species in synthetic solutions. Optimum isocratic separations of inorganic Sb(V) and Sb(III) species are achieved using mobile phases comprised of ammonium tartrate under controlled pH conditions, and rapid pH gradient elution profiles are developed to facilitate separations of the Sb(V), Sb(III) and TMSb species in a single chromatographic run. Optimum peak resolution is achieved when using the 100 x 4.6 mm HAAX column at 20 degrees C and 100 mM ammonium tartrate mobile phases with a gradient from pH 3.0 to pH 1.2, although a system peak co-elutes with TMSb under these conditions and precludes quantitative analyses. Interestingly, the elution order of Sb(V), Sb(III) and TMSb species reverses when the temperature of the HAAX stationary phase is increased to 60 degrees C, and concurrent use of a less acidic pH gradient elution profile from pH 2.3 to pH 1.5 is shown to enable successful species separations whilst preventing occurrence of the co-eluting system peak. Limits of detection are achieved in the sub ng mL(-1) range using these novel HPLC-ICP-MS methodologies and provide scope for future environmental analysis applications.  相似文献   

13.
Unbonded silicon oxynitride and silica high‐performance liquid chromatography stationary phases have been evaluated and compared for the separation of basic compounds of differing molecular weight, pKa, and log D using aqueous/organic mobile phases. The influences of percentage of organic modifier, buffer pH, and concentration in the mobile phase on base retention were investigated on unbonded silicon oxynitride and silica phases. The results confirmed that unbonded silicon oxynitride and silica phases demonstrated excellent separation performance for model basic compounds and both the unbonded phases examined possessed a hydrophobic/adsorption and ion‐exchange character. The silicon oxynitride stationary phase exhibited high hydrophilicity compared with silica with a reversed‐phase mobile phase. An ion‐exclusion‐type mechanism becomes predominant for the separation of three aimed bases on the silicon oxynitride column at pH 2.8. Different from silicon oxynitride stationary phase, no obvious change for the retention time of three model bases on silica stationary phase at pH 2.8 can be observed.  相似文献   

14.
Monoclonal antibody (MAb) variants differing by one or two C-terminal lysine residues can be separated by cation-exchange chromatography due to the difference in their charge distribution. The adsorption of the three MAb variants on a weak cation-exchange resin was characterized using directly the raw mixture in spite of the presence of some impurities. The effects of both, pH and eluent salt concentration, on the adsorption isotherm were investigated. Under certain experimental conditions distorted peak shapes and even peak doubling for single variant injections were obtained, in addition to unexpectedly long retention times. These observations were explained based on equilibrium theory. The separation of the MAb variants was designed for an isocratic and a linear salt gradient operation. The corresponding optimal values of pH and salt concentration were determined. The use of salt gradients not only allows reducing the process time and increasing enrichment of the variants, but also leads to some loss in purity. A baseline separation could be obtained under isocratic and strongly adsorbing conditions at pH 6.3. A lumped kinetic model and a procedure for estimating the corresponding parameters were developed and validated by comparison with experimental elution chromatograms in a wide range of operating conditions.  相似文献   

15.
The use of silver halide impregnated supports for high-pressure liquid chromatographic (HPLC) and thin-layer chromatographic (TLC) analysis of drug substances has been studied. Successful separations of xanthines and mixtures containing barbiturates, xanthines, ergot alkaloids, and tropane alkaloids have been achieved with isocratic conditions or by using simple gradients. The Ag-supports show a similar behavior as many chemically bonded stationary phases, such as modification fo adsorption sites on silica gel to give lower retention but better specificity; rapid reconditioning in connection with gradient elution (3-5 minutes). Reasonable cost, simplicity of preparation and usage, and good chemical and physical stability render the silver halide phases applicable in routine analysis and quite competitive with many commercially available chemically bonded stationary phases.  相似文献   

16.
Inorganic anions could be separated on porous graphitic carbon stationary phases in ion chromatography. Ion exchange between eluent anions and sample anions on the stationary phase was confirmed by the retention behavior and the possibility of indirect photometric detection. The elution order of anions was different from that observed for commercially available anion exchangers. Chloride, nitrate, and sulfate contained in tap water could be determined in 7 min.  相似文献   

17.
Monodisperse poly(glycidyl methacrylate-divinylbenzene) microspheres were functionalized with propyl sulfonic acid moieties to obtain beads negatively charged in a wide pH range. They were packed into fused-silica capillary of 50 micro, I.D. in order to separate proteins by capillary electrochromatography (CEC). Baseline separation of four basic proteins as well as three cytochrome c variants with an average column efficiency of 60,000 theoretical plates was obtained under isocratic elution conditions. The high efficiency is attributed to the uniformity of the column packing and the hydrophilic surface coverage of the polymer beads derived from the functionalization process. The effect of pH and salt concentration on protein separations was investigated and the results showed that the CEC separation mechanism is the combination of chromatographic retention and electrophoretic migration. Moreover, the column packed with the strongly acidic poly(glycidyl methacrylate-divinylbenzene) beads was also suitable for protein separations by micro-HPLC with a salt gradient. The comparison between the two kinds of elution modes shows that the column described here exhibited higher peak efficiency with isocratic elution in CEC than with gradient elution in micro-HPLC.  相似文献   

18.
以3.0μm无孔单分散亲水性交联聚甲基丙烯酸环氧丙酯树脂为基质,将其表面经新的化学方法改性后制备了一种新型的无孔中强阳离子交换色谱填料。详细考察了该无孔填料对标准蛋白分离性能,有机溶剂、pH、流动相盐种类和流速等对蛋白质保留的影响。实验结果表明,在流速为4 mL/min时,线性梯度时间在2.0 min内可快速分离4种标准蛋白,蛋白质的保留符合阳离子交换色谱规律。将其应用于快速纯化鸡蛋清中的溶菌酶,取得较好效果。  相似文献   

19.
The mixed-mode separation of a selection of anionic and cationic pharmaceutically related compounds is studied using ion-exchange columns and eluents consisting of ionic salts (potassium hydroxide or methanesulfonic acid) and an organic modifier (methanol). All separations were performed using commercially available ion-exchange columns and an ion chromatography instrument modified to allow introduction of methanol into the eluent without introducing compatibility problems with the eluent generation system. Isocratic retention prediction was undertaken over the two-dimensional space defined by the concentration of the competing ion and the percentage of organic modifier in the eluent. Various empirical models describing the observed relationships between analyte retention and both the competing ion concentration and the percentage of methanol were evaluated, with the resultant model being capable of describing the separation, including peak width, over the entire experimental space based on six initial experiments. Average errors in retention time and peak width were less than 6% and 27%, respectively, for runs taken from both inside and outside of the experimental space. Separations performed under methanol gradient conditions (while holding the competing ion concentration constant) were also modelled. The observed effect on retention of varying the methanol composition differed between analytes with several analytes exhibiting increased retention with increased percentage methanol in the eluent. An empirical model was derived based on integration of the observed tR vs. %methanol plot for each analyte. A combination of the isocratic and gradient models allowed for the prediction of retention time using multi-step methanol gradient profiles with average errors in predicted retention times being less than 4% over 30 different 2- and 3-step gradient profiles for anions and less than 6% over 14 different 2- and 3-step gradient profiles for cations. A modified peak compression model was used to estimate peak widths under these conditions. This provided adequate width prediction with the average error between observed and predicted peak widths being less than 15% for 40 1-, 2- and 3-step gradients for anions and less than 13% over 14 1-, 2- and 3-step gradients for cations.  相似文献   

20.
The nature and extent of mixed-mode retention mechanisms evident for three structurally related, agglomerated, particle-based stationary phases were evaluated. These three agglomerated phases were Thermo Fisher ScientificIon PacAS11-HC – strong anion exchange, Thermo Fisher Scientific IonPac CS10 – strong cation-exchange PS-DVB, and the Thermo Fisher Scientific Acclaim Trinity P1silica-based substrate, which is commercially marketed as a mixed-mode stationary phase. All studied phases can exhibit zwitterionic and hydrophobic properties, which contribute to the retention of charged organic analytes. A systematic approach was devised to investigate the relative ion-exchange capacities and hydrophobicities for each of the three phases, together with the effect of eluent pH upon selectivity, using a specifically selected range of anionic, cationic and neutral aromatic compounds. Investigation of the strong anion-exchange column and the Trinity P1 mixed-mode substrate, in relation to ion-exchange capacity and pH effects, demonstrated similar retention behaviour for both the anionic and ampholytic solutes, as expected from the structurally related phases. Further evaluation revealed that the ion-exchange selectivity of the mixed-mode phase exhibited properties similar to that of the strong anion-exchange column, with secondary cation-exchange selectivity, albeit with medium to high anion-exchange and cation-exchange capacities, allowing selective retention for each of the anionic, cationic and ampholytic solutes. Observed mixed-mode retention upon the examined phases was found to be a sum of anion- and cation-exchange interactions, secondary ion-exchange and hydrophobic interactions, with possible additional hydrogen bonding. Hydrophobic evaluation of the three phases revealed log P values of 0.38–0.48, suggesting low to medium hydrophobicity. These stationary phases were also benchmarked against traditional reversed-phase substrates namely, octadecylsilica YMC-Pac Pro C18 and neutral μPS-DVB resin IonPac NS1-5u, yielding log P values of 0.57 and 0.52, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号