首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 80 毫秒
1.
The reactions of [Bt3NH][μ-CO)(μ-RS)Fe2(CO)6] (1a-d) (R=nPr,nBu,tBu, Ph) with p-MeC6H4C=CPh or m-NO2C6H4C=CPh were studied and products of the vinyl type (μ-σ,π-p-MeC6H4C=CHPh)(μ-RS)Fe2(CO)6 (2) and (μ-σ,π-phC=CHC6H4Me-p) (μ-RS)Fe2(CO)6 (3) (R=nPr, nBu, tBu, Ph) were obtained. While the structures of all the compounds 2a-d and 3a-d were characterized by elemental analysis, IR,1H NMR and MS spectroscopies, the single-crystal structure of 2c(R=tBu) was determined by X-ray diffraction method. The X-ray dim-action result of 2c showed that the substituted vinyl ligand p-MeC6H4C=CHPh bridges the two uon centers, being σ-bonded to one metal through the olefinic carbon attached to p-MeC6H44 group, while π-bonded to the other via olefinic linkage; the Fe2(CO)6 and proton units are in a cis fashion and the tBu group is bonded to sulfur atom through an e-type of bond.  相似文献   

2.
The fluorophobic effect of the semi-fluorinated chain of discotic molecules efficiently improves the stability of columnar mesophase.Low symmetric discogens exhibit decreased melting points and wide mesophase ranges.A series of triphenylene derivatives 1,C18H6(OCnH2n+1)4(OMe)(O2CC2H4C6F13),and their hydrocarbon analogues 2,C18H6(OCnH2n+1)4(OMe)(O2CC8H17),n = 4―8,were synthesized for the investigation of the influence of semi-fluorinated peripheral chain and molecular symmetry on mesomorphism.The structures ...  相似文献   

3.
The crystals of enantiopure SS-[cis-Rh2(Ph2C6H4)2(O2CC2F4CO2)]2((CH3)2CHCH2NH2)3(1) were obtained from the reaction of S-[cis-Rh2(Ph2C6H4)2(CH3CN)6]BF4(S-2) and(Et4N)2(O2CC2F4CO2) in CH2Cl2/CH3OH under the presence of sec-butyl amine.Compound 1 crystallizes in orthorhombic,space group P212121 with a = 16.880(5),b = 28.728(9),c = 20.475(6) ,V = 9929(5) 3,Z = 4,C95H96Cl5F8N3O8.50P4Rh4,Mr = 2280.52,Dc = 1.526 g/cm3,F(000) = 4608 and μ(MoKα) = 0.922 mm-1.The final R = 0.0488 and wR = 0.1164 for 17204 observed reflections with I > 2σ(I) and R = 0.0814 and wR = 0.1374 for all data with absolute structure parameter =-0.04(3).Compound 1 contains two inherently chiral S-[cis-Rh2(Ph2C6H4)2] moieties which are connected by two(O2CC2F4CO2) dicarboxylate ligands in the equatorial positions.One of the dirhodium units with Rh-Rh distance of 2.5445(8)  is further coordinated by a sec-butyl amine in each axial position.Another dirohdium unit has only one axial sec-butyl amine ligand,and its Rh-Rh distance is 2.5079(9) .  相似文献   

4.
The synthesis,the crystal structure and the reaction of the hetero-binuclear complex[MnRe(CO)6(μ-SH)(μ-SC(H)PPr^i3)(PPh3)] are reported.The results of single crystal X-ray structure analysis showed that the fragments Mn(CO)3 and Re(CO)3 were bridged by SH and SC(H)PPr^i3.The title complexes can react with Bu^nLi and RX forming complexes MnRe(CO)6(μ-SR)(μ-SC(H)PPr^i3)(PPh3)](R=Me,CH2CH=CH2,SnBu3^n).  相似文献   

5.
Solvothermal reaction of lanthanide(Ⅲ) salts with fluorescein (2-(6-hydroxy3-oxo-3H-xanthen-9-yl)benzoic acid) led to a series of new coordination polymers {[Ln(C 20 H 11 O 5)(C 20 H 10 O 5)(H 2 O)]·DMF} n (Ln=Er,Eu,Gd,Tb,Tm,Yb).The PXRD patterns of the complexes indicate they are isomorphous.The structure of complex {[Er(C 20 H 11 O 5)(C 20 H 10 O 5)(H 2 O)]·DMF} n has been determined by single-crystal X-ray diffraction,revealing a 2D framework in which DMF molecules were filled between the layers.The crystal structure belongs to the triclinic system,space group P1,with a=12.107(4),b=12.232(4),c=13.273(4),α=68.005(7),β=88.024(11),γ=77.451(8)°,V=1776.7(9) 3,Z=2,D c=1.720 g/cm 3,μ=2.434 mm-1,F(000)=918,R int=0.0584,T=293(2) K,the final R=0.0621 and wR=0.1501.  相似文献   

6.
A new lanthanide complex [Sm(C2O4)(H2O)5]nCln·2nH2O has been obtained by hydrothermal synthetic method. The crystal belongs to monoclinic, space group P21/n, with a = 7.5438(6), b = 14.3201(11), c = 10.8608(9) , β = 94.565(4)o, V = 1169.55(16) 3, C2H14ClO11Sm, Mr = 399.93, Z = 4, Dc = 2.271 g/cm3, μ = 5.290 cm1, F(000) = 772, the final R = 0.0271 and wR = 0.0632 for 1880 observed reflections with I > 2σ(I). X-ray crystal analysis reveals that each Sm(III) atom is nine-coordinated by four oxygen atoms from two oxalate ligands and five coordinated water molecules in a distorted tricapped trigonal prism. The chain-like structure of lanthanide oxalate is reported for the first time. The fluorescent property and magnetic behavior of the title compound were investigated. The θ of –14.3(2)° and J of –0.26 cm-1 indicate antiferromagnetic interaction in the molecule.  相似文献   

7.
Two dinuclear organotin complexes C8H14(CO2SnCy3)2(1)(Cy = cyclohexyl group) and C8H14[CO2Sn(CH2CMe2Ph)3]2(2) were synthesized by the reactions of camphoric acid with tricyclohexyltin hydroxide and bis[tri(2-methyl-2-phenyl)propyltin] oxide under solvothermal conditions, and these complexes were characterized by infrared spectra, elemental analyses, and H NMR spectra. The crystal of 1 belongs to the monoclinic system, space group P21/c with a = 1.83478(19), b = 1.52707(18), c = 1.9849(2) nm, β = 122.515(7), Z = 4, V = 4.6896(9) nm3, Dc = 1.324 g/cm3, μ(MoKα) = 1.103 mm-1, F(000) = 1952, R = 0.0697 and wR = 0.2040. In addition, thermal stability and quantum chemical calculation of 1 were also studied.  相似文献   

8.
Metallocene complex Cp2^ttZrCl2(Cp^tt=η^5-1,3-^tBu2C5H3)(1)has been prepared from the reaction of LiCp^tt with ZrCl4 in good yield.Reactions of 1 with dilithium dichalcogenolate o-carboranes afforded new type of half-sandwich compounds with dichalcogenolate o-carboranyl ligands,[Li(THF)4][Cp^ttZr(E2C2B10H10)2](E=S,2a;E=Se,2b)in which only one cyclopentadienyl ring ligand existed.Complexes 1 and 2a were structurally characterized by X-ray analyses.In complex 2a,the Zr(IV)ion is η^5-bound to one 1,3-ditert-cyclopentadienyl ring and σ-bound to four μ2-sulfur atoms of two dithio-carboranes.the zirconium atom and four sulfur atoms form a distorted pyramid.The coordination sphere around the zirconium atom resembles in a piano stool structure with four legs of sulfur stoms and the fulcrum at the zirconium stom.  相似文献   

9.
Two novel complexes {[Zn(IM4py)2(tp)(H2O)]·2H2O}n 1 and {[Cd(IM4py)2(tp)- (H2O)]·1.25H2O}n 2 (IM4py = 2-(4'-pyridinyl)-4,4,5,5-tetramethylimidazoline-1-oxyl and tp = terephthalate dianion) have been synthesized and characterized by elemental analyses, IR spectrum and single-crystal X-ray diffraction. Crystal data for complex 1: monoclinic, space group C2/c, a = 20.648(7), b = 12.130(4), c = 14.036(4) , β = 106.351(5)o, C32H42N6O9Zn, Mr = 720.09, V = 3373.3(2) 3, Z = 4, Dc = 1.418 g/cm3, μ(MoKα) = 0.790 mm-1, F(000) = 1512, the final R = 0.0407 and wR = 0.0894 for 3480 independent reflections with Rint = 0.0432. Crystal data for complex 2: monoclinic, space group C2/c, a = 21.332(6), b = 12.063(3), c = 14.246(4) , β = 106.704(4)o, C32H40.50N6O8.25Cd, Mr = 753.60, V = 3511.2(2) 3, Z = 4, Dc = 1.426 g/cm3, μ(MoKα) = 0.679 mm-1, F(000) = 1554, the final R = 0.0419 and wR = 0.0961 for 3627 independent reflections with Rint = 0.0440. The framework structures of complexes 1 and 2 are 3-D networks via the hydrogen bonds among 1-D chains. The notable characteristics of the two complexes are that the coordination polyhedron of Zn(II) adopts a rare distorted five-coordinate square pyramidal geometry in 1, and the Cd(II) complex exhibits an unusual distorted seven-coordinate pentagonal bipyramid in 2.  相似文献   

10.
A novel polymeric Pr2Cu3 complex of iminodiacetic acid (H2L1=NH{CH2COOH}2) [Pr2Cu3(L1)6]n , 1, has been synthesized and structurally characterized. The title complex Pr2Cu3O24N6C24H30 (Mr=1258.97) crystallized in trigonal space group Pc1 (No. 165) with a = 13.424(4), c=14.752(6)(); V=2303(1)()3; F(000)=1226; λ(MoKα)=35.2 cm-1; Dc=1.820 g.cm-3; Z=2. The final R and Rw are 0.072 and 0.081 respectively for 1412 reflections with I>3σ(I). In crystal 1, the Pr3+ ion is nine-coordinated by 6 O atoms from three bidentate chelating carboxylate groups and 3 O atoms from three anti-anti bridging carboxylic groups of six L1 ligands; the Cu2+ ion is six-coordinated by 4 O and 2 N atoms from two pentadentate L1 ligands. Each pair of Pr(Ⅲ) atoms is bridged by three L1 ligands, each of which also chelates with one copper(Ⅱ) ion, thus forming a Pr2Cu3 cluster unit. Such cluster units are cross-linked by flexible L1 ligands into a three-dimensional coordination framework.  相似文献   

11.
Treatment of N,N‐chelated germylene [(iPr)2NB(N‐2,6‐Me2C6H3)2]Ge ( 1 ) with ferrocenyl alkynes containing carbonyl functionalities, FcC≡CC(O)R, resulted in [2+2+2] cyclization and formation of the respective ferrocenylated 3‐Fc‐4‐C(O)R‐1,2‐digermacyclobut‐3‐enes 2 – 4 [R = Me ( 2 ), OEt ( 3 ) and NMe2 ( 4 )] bearing intact carbonyl substituents. In contrast, the reaction between 1 and PhC(O)C≡CC(O)Ph led to activation of both C≡C and C=O bonds producing bicyclic compound containing two five‐membered 1‐germa‐2‐oxacyclopent‐3‐ene rings sharing one C–C bond, 4,8‐diphenyl‐3,7‐dioxa‐2,6‐digermabicyclo[3.3.0]octa‐4,8‐diene ( 5 ). With N‐methylmaleimide containing an analogous C(O)CH=CHC(O) fragment, germylene 1 reacted under [2+2+2] cyclization involving the C=C double bond, producing 1,2‐digermacyclobutane 6 with unchanged carbonyl moieties. Finally, 1 selectively added to the terminal double bond in allenes CH2=C=CRR′ giving rise to 3‐(=CRR′)‐1,2‐digermacyclobutanes [R/R′ = Me/Me ( 7 ), H/OMe ( 8 )] bearing an exo‐C=C double bond. All compounds were characterized by 1H, 13C{1H} NMR, IR and Raman spectroscopy and the molecular structures of 3 , 4 , 5 , and 8 were established by single‐crystal X‐ray diffraction analysis. The redox behavior of ferrocenylated derivatives 2 – 4 was studied by cyclic voltammetry.  相似文献   

12.
In the presence of iron pentacarbonyl, photochemical reaction between phenylisocyanate and ferrocenylacetylene results in ferrapyrrolinone complex [Fe2(CO)62‐η3‐FcC═C(H)C(O)NPh)] ( 1 ) and maleimide 3‐ferrocenyl‐1‐phenyl‐1H ‐pyrrole‐2,5‐dione ( 2 ). Under similar experimental conditions, ferrocenyl−/phenyl‐substituted butadiyne primarily shows the activation of only one C☰C bond and results in ferrapyrrolinone complexes [Fe2(CO)62‐η3‐FcC═C(C☰CR)C(O)NPh)] ( 3 , R = Fc; 3a , R = Ph), maleimides 3‐ferrocenyl‐1‐phenyl‐4‐(ferrocenylethynyl)‐1H –pyrrole‐2,5‐dione ( 5 ) and 3‐ferrocenyl‐1‐phenyl‐4‐(phenylethynyl)‐1H –pyrrole‐2,5‐dione ( 5a ) and [Fe2(CO)62‐η3‐FcC═C(R)C(O)NPh)] ( 4 ; R  = 3‐ferrocenyl‐1‐phenyl‐1H ‐pyrrole‐2,5‐dione). Compound 4 consists of ferrapyrrolinone and a maleimide unit, formed by the activation of both C☰C bonds of diferrocenylbutadiyne. Activation of both C☰C bonds in a substituted butadiyne is a rare observation. Formation of the ferrapyrrolinone compounds is an advance over the earlier reported methods which generally use internal alkynes and involve prior synthesis of other clusters.  相似文献   

13.
Iridabenzenes [Ir[=CHCH=CHCH=C(CH2R)](CH3CN)2(PPh3)2]2+ (R=Ph 4 a, R=p-C6H4CH3 4 b) are obtained from the reactions of H+ with iridacyclohexadienes [Ir[-CH=CHCH=CHC(=CH-p-C6H4R')](CO)(PPh3)2]+ (R'=H 3 a, R'=CH3 3 b), which are prepared from [2+2+1] cyclotrimerization of alkynes in the reactions of [Ir(CH3CN)(CO)(PPh3)2]+ with HC[triple chemical bond]CH and HC[triple chemical bond]CR. Iridabenzenes 4 react with CO and CH3CN in the presence of NEt3 to give iridacyclohexadienes [Ir[-CH=CHCH=CHC(=CHR)](CO)2(PPh3)2]+ (6) and [Ir[-CH=CHCH=CHC(=CHR)](CH3CN)2(PPh3)2]+ (7), respectively. Iridacyclohexadienes 6 and 7 also convert to iridabenzenes 4 by the reactions with H+ in the presence of CH3CN. Alkynyl iridacyclohexadienes [Ir[-CH=CHCH=CHC(=CH-p-C6H4R')](-C[triple chemical bond]CH)(PPh3)2] (8) undergo a cleavage of C[triple chemical bond]C bond by H+/H2O to produce [Ir[-CH=CHCH=CHC(=CH-p-C6H4R')](-CH3)(CO)(PPh3)2] (10) via facile inter-conversion between iridacyclohexadienes and iridabenzenes.  相似文献   

14.
The isomeric ferrocene phosphine-carboxamides, 1-(diphenylphosphino)-1'-{[N-(2-pyridyl)-methyl]carbamoyl}ferrocene (1) and 1-(diphenylphosphino)-1'-{[N-(4-pyridyl)methyl]carbamoyl}ferrocene (2) have been studied as ligands in group-12 metal bromide complexes. The reactions of 1 with CdBr2 x 4H2O and HgBr(2) at 1:1 mole ratio gave the discrete tetracadmium complex [Cd2(micro-Br)2(-1kappa2O,N2)2[micro-1kappa2O,N2:2kappaP-(C5H4N)CH2NHC(O)fcPPh2-CdBr3]2] (7; fc = ferrocene-1,1'-diyl) and the halogeno-bridged dimer [[Hg(micro-Br)Br(-kappaP)]2] (8), respectively. In the presence of acetic acid, the CdBr2-1 system furnished a zwitterionic complex featuring protonated 1 as the P-monodentate donor, [CdBr3[Ph2PfcC(O)NHCH2(C5H4NH)-kappaP]] x H2O (6 x H2O). Under neutral conditions, compound , whose terminal donor groups are better arranged for the formation of extended assemblies, gave rise to one-dimensional coordination polymers [MBr2[micro(P,N)-]](n) (M = Cd, 4; M = Hg, ). The crystal structures of 2 x H2O, its corresponding phosphine oxide (3 x H2O), and complexes 4, 5, 6 x H2O, and have been determined, revealing extensive hydrogen bonding interactions in the solid state.  相似文献   

15.
The mono- and binuclear aryldiazene complexes [Re(C6H5N=NH)(CO)5-nPn]BY4 (1-5) and [(Re(CO)5-nPn)2-(mu-HN=NAr-ArN=NH)](BY4)2 (6-12) [P = P(OEt)3, PPh(OEt)2, PPh2OEt; n = 1-4; Ar-Ar = 4,4'-C6H4-C6H4, 4,4'-(2-CH3)C6H3-C6H3(2-CH3), 4,4'-C6H4-CH2-C6H4; Y = F, Ph) were prepared by reacting the hydride species ReH(CO)5-nPn with the appropriate mono- and bis(aryldiazonium) cations. These compounds, as well as other prepared compounds, were characterized spectroscopically (IR; 1H, 31P, 13C, and 15N NMR data), and 1a was also characterized by an X-ray crystal structure determination. [Re(C6H5N=NH)(CO)(P(OEt)3)4]BPh4 (1a) crystallizes in space group P1 with a = 15.380(5) A, b = 13.037(5) A, c = 16.649(5) A, alpha = 90.33(5) degrees, beta = 91.2(1) degrees, gamma = 89.71(9) degrees, and Z = 2. The "diazene-diazonium" complexes [M(CO)3P2(HN=NAr-ArN identical to N)](BF4)2 (13-15, 17) [M = Re, Mn; P = PPh2OEt, PPh2OMe, PPh3; Ar-Ar = 4,4'-C6H4-C6H4, 4,4'-C6H4-CH2-C6H4] and [Re(CO)4(PPh2OEt)(4,4'-HN=NC6H4-C6H4N identical to N)](BF4)2 (16b) were synthesized by allowing the hydrides MH(CO)3P2 or ReH(CO)4P to react with equimolar amounts of bis(aryldiazonium) cations under appropriate conditions. Reactions of diazene-diazonium complexes 13-17 with the metal hydrides M2H2P'4 and M2'H(CO)5-nP"n afforded the heterobinuclear bis(aryldiazene) derivatives [M1(CO)3P2(mu-HN=NAr-ArN=NH)M2HP'4](BPh4)2 (ReFe, ReRu, ReOs, MnRu, MnOs) and [M1(CO)3P2(mu-HN=NAr-ArN=NH)M2'(CO)5-nP"n](BPh4)2 (ReMn, MnRe) [M1 = Re, Mn; M2 = Fe, Ru, Os; M2' = Mn, Re; P = PPh2OEt, PPh2OMe; P',P" = P(OEt)3, PPh(OEt)2; Ar-Ar = 4,4'-C6H4-C6H4, 4,4'-C6H4-CH2-C6H4; n = 1, 2]. The heterotrinuclear complexes [Re(CO)3(PPh2OEt)2(mu-4,4'-HN=NC6H4-C6H4N=NH)M(P(OEt)3)4(mu-4,4'-HN=NC6H4- C6H4N=NH)Mn(CO)3(PPh2OEt)2](BPh4)4 (M = Ru, Os) (ReRuMn, ReOsMn) were obtained by reacting the heterobinuclear complexes ReRu and ReOs with the appropriate diazene-diazonium cations. The heterobinuclear complex with a bis(aryldiazenido) bridging ligand [Mn(CO)2(PPh2OEt)2(mu-4,4'-N2C6H4-C6H4N2)Fe(P(OEt)3)4]BPh4 (MnFe) was prepared by deprotonating the bis(aryldiazene) compound [Mn(CO)3(PPh2OEt)2(mu-4,4'-HN=NC6H4-C6H4N=NH)Fe(4- CH3C6H4CN)(P(OEt)3)4](BPh4)3. Finally, the binuclear compound [Re(CO)3(PPh2OEt)2(mu-4,4'-HN=NC6H4-C6H4N2)Fe(CO)2(P(OPh)3)2](BPh4)2 (ReFe) containing a diazene-diazenido bridging ligand was prepared by reacting [Re(CO)3(PPh2OEt)2(4,4'-HN=NC6H4-C6H4N identical to N)]+ with the FeH2(CO)2(P(OPh)3)2 hydride derivative. The electrochemical reduction of mono- and binuclear aryldiazene complexes of both rhenium (1-12) and the manganese, as well as heterobinuclear ReRu and MnRu complexes, was studied by means of cyclic voltammetry and digital simulation techniques. The electrochemical oxidation of the mono- and binuclear aryldiazenido compounds Mn(C6H5N2)(CO)2P2 and (Mn(CO)2P2)2(mu-4,4'-N2C6H4-C6H4N2) (P = PPh2OEt) was also examined. Electrochemical data show that, for binuclear compounds, the diazene bridging unit allows delocalization of electrons between the two different redox centers of the same molecule, whereas the two metal centers behave independently in the presence of the diazenido bridging unit.  相似文献   

16.
New modes of 1,3-dipolar cycloaddition are uncovered by the isolation of [CH2(6-t-Bu-4-Me-C6H2O)2]P(C(CO2Me)C(CO2Me)N[NP(N3)(OC6H2-6-t-Bu-4-Me)2CH2]N) (3) and [CH2(6-t-Bu-4-Me-C6H2O)2]P(C(CO2Me)C(CO2Me)C(O)N) (4) on treating [CH2(6-t-Bu-4-Me-C6H2O)2]P-X [X = N3 (1) and NCO (2)] with the dipolarophile MeO2CC identical to CCO2Me; compound 4 undergoes an unprecedented ring expansion upon addition of 2-(methylamino)ethanol to afford the spirocycle [CH2(6-t-Bu-4-Me-C6H2O)2]P(OCH2CH2N(Me)CH(CO2Me)CH(CO2Me)C(O)N) (5).  相似文献   

17.
H-transfers by 4-, 5-, and 6-membered ring transition states to the pi-bonded methylene of CH3CH2CH2NH+=CH2 (1) are characterized by theory and compared with the corresponding transfers in cation radicals. Four-membered ring H-transfers converting 1 to CH3CH2CH=N+HCH3 (2) and CH3N+H=CH2 to CH2=NH+CH3 are high-energy processes involving rotation of the source and destination RHC= groups (R = H or C2H5) to near bisection by skeletal planes; migrating hydrogens move near these planes. The H-transfer 1 --> CH3C+HCH2NHCH3 (3) has a higher energy transition-state than 1 --> 2, in marked contrast to the corresponding relative energies of 4- and 5-membered ring H-transfers in cation-radicals. Six-membered ring H-transfer-dissociation (1 --> CH2=CH2 + CH2=N+HCH3) is a closed shell analog of the McLafferty rearrangement. It has a lower energy transition-state than either 1 --> 2 or 1 --> 3, but is still a much higher energy process than 6-membered ring H-transfers in aliphatic cation radicals. In contrast to the stepwise McLafferty rearrangement in cation radicals, H-transfer and CC bond breaking are highly synchronous in 1 --> CH3N+H=CH2 + CH2=CH2. H-transfers in propene elimination from 1 are ion-neutral complex-mediated: 1--> [CH3CH2CH2+ ---NH=CH2] --> [CH3C+HCH3 NH=CH2] --> CH3CH = CH2 + CH2=NH2+. Intrinsic reaction coordinate tracing demonstrated that a slight preference for H-transfer from the methyl containing the carbon from which CH2=NH is cleaved is due to CH2=NH passing nearer this methyl than the other on its way to abstracting H, i.e., some memory of the initial orientation of the partners accompanies this reaction.  相似文献   

18.
The reaction of the dihydride [RuII(H)2(CO)(PPh3)3], 3, with excess azo-2,2'-bipyridine (abp) in boiling dry benzene has afforded the diradical bischelate [RuII(abp.-)2(CO)(PPh3)], 4, and the hydridic monochelate monoradical [RuII(abp.-)(H)(CO)(PPh3)2], 5. A similar reaction between 3 and 2-(p-chlorophenylazo)pyridine (Clpap) did not yield a bischelate, but the hydridic monoradical [RuII(Clpap.-)(H)(CO)(PPh3)2], 6, has been isolated. Upon treatment of 4-6 with NH4PF6 in a wet dichloromethane-acetonitrile medium, the one-electron-oxidized salts 4+PF6-, 5+PF6-, and 6+PF6- are isolated, H+ being the oxidizing agent. The X-ray structures of 4+PF6-.CH2Cl2, 5+PF6-.H2O, and 6+PF6- have been determined. In the monoradical 4+ the azo N-N bond lengths in the two chelate rings are 1.284(6) and 1.336(6) A, showing that the radical electron is localized in the latter ring. The half-filled extended Hückel HOMO is indeed found to be so localized, and it has a large azo character. Complexes 4-6 display radical redox couples with E1/2 in the range -0.5 to +0.10 V vs SCE. The E1/2 values qualitatively correlate with corresponding vco values (1900-2000 cm-1). The monoradicals (S = 1/2) 4+, 5, and 6 uniformly display a strong EPR signal near g = 2.00. Metal-mediated magnetic interaction makes the EPR-silent diradical 4 strongly antiferromagnetic with J = -299 cm-1. Crystal data are as follows: (4+PF6-.CH2Cl2, C40H33Cl2F6N8-OP2Ru) monoclinic, space group P2(1)/c (no. 14), a = 14.174(6) A, b = 16.451(4) A, c = 18.381(4) A, beta = 98.00(3) degrees, Z = 4; (5+PF6-.H2O, C47H41F6N4O2P3Ru) monoclinic, space group P2(1)/n (no. 14), a = 9.433(2) A, b = 38.914(17) A, c = 13.084(3) A, beta = 103.47(2) degrees, Z = 4; (6+PF6-, C48H39ClF6N3OP3Ru) monoclinic, space group P2(1)/n (no. 14), a = 10.496(5) A, b = 22.389(8) A, c = 19.720(6) A, beta = 90.53(3) degrees, Z = 4.  相似文献   

19.
Mixed-ligand hydrazine complexes [M(CO)(RNHNH2)P4](BPh4)2 (1, 2) [M = Ru, Os; R = H, CH3, C6H5; P = P(OEt)3] with carbonyl and triethyl phosphite were prepared by allowing hydride [MH(CO)P4]BPh4 species to react first with HBF4.Et2O and then with hydrazines. Depending on the nature of the hydrazine ligand, the oxidation of [M(CO)(RNHNH2)P4](BPh4)2 derivatives with Pb(OAc)4 at -30 C gives acetate [M(kappa1-OCOCH3)(CO)P4]BPh4 (3a), phenyldiazene [M(CO)(C6H5N=NH)P4](BPh4)2 (3c, 4c), and methyldiazene [M(CO)(CH3N=NH)P4](BPh4)2 (3b, 4b) derivatives. Methyldiazene complexes 3b and 4b undergo base-catalyzed tautomerization of the CH3N=NH ligand to formaldehyde-hydrazone NH2N=CH2, giving the [M(CO)(NH2N=CH2)P4](BPh4)2 (5, 6) derivatives. Complexes 5 and 6 were characterized spectroscopically and by the X-ray crystal structure determination of the [Ru(CO)(NH2N=CH2)[P(OEt)3]4](BPh4)2 (5) derivative. Acetone-hydrazone [M(CO)[NH2N=C(CH3)2]P4](BPh4)2 (7, 8) complexes were also prepared by allowing hydrazine [M(CO)(NH2NH2)P4](BPh4)2 derivatives to react with acetone.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号