首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A comprehensive GCxGC-TOFMS method was optimized for multiresidue analysis of pesticides using a combination of a non-polar (RTX-5MS, 10 m x 0.18 mm x 0.2 microm) and a polar capillary column (TR-50MS, 1 m x 0.1 mm x 0.1 microm), connected in series through a dual stage thermal modulator. The method resolved the co-elution problems as observed in full scan one-dimensional GC-MS analysis and allowed chromatographic separation of 51 pesticides within 24 min run time with library-searchable mass spectrometric confirmation. Four pesticides, viz. chlorpyrifos-methyl, vinclozoline, parathion-methyl and heptachlor could be baseline separated on GCxGC, which were otherwise closely eluting and interfering each other's detection in 1D GC-MS run. Similarly, it could be possible to separate myclobutanil, buprofezin, flusilazole and oxyfluorfen on GCxGC. Although in 1D GC-MS, these closely eluting compounds could be identified through deconvolution algorithm and 'peak-find' option of the Chromatof software but the spectral purity significantly improved on GCxGC analysis. Thorough optimization was accomplished for the oven temperature programming, ion source temperature and GCxGC parameters like modulation period, duration of hot pulses, modulation-offset temperature, acquisition rate, etc. to achieve best possible separation of the test compounds. The limit of detection significantly improved by 2-12 times on GCxGC-TOFMS against GC-TOFMS because of sharper and narrower peak shapes. The method was tested for grape matrix after preparing the samples using previously described method and recoveries of the entire test pesticides were within 70-110% at 10 ng/g level of fortification. GCxGC-TOFMS was found to be an excellent technique for library-based screening of pesticides with high accuracy and sensitivity.  相似文献   

2.
Five different mass spectrometers interfaced to GC or LC were evaluated for their application to targeted and nontargeted screening of pesticides in two foods, spinach and ginseng. The five MS systems were capillary GC/MS/MS, GC-high resolution time-of-flight (GC/HR-TOF)-MS, TOF-MS interfaced with a comprehensive multidimensional GC (GCxGC/TOF-MS), an MS/MS ion trap hybrid mass (qTrap) system interfaced with an ultra-performance liquid chromatograph (UPLC-qTrap), and UPLC interfaced to an orbital trap high resolution mass spectrometer (UPLC/Orbitrap HR-MS). Each MS system was tested with spinach and ginseng extracts prepared through a modified quick, easy, cheap, effective, rugged, and safe (QuEChERS) procedure. Each matrix was fortified at 10 and 50 ng/g for spinach or 25 and 100 ng/g for ginseng with subsets of 486 pesticides, isomers, and metabolites representing most pesticide classes. HR-TOF-MS was effective in a targeted search for characteristic accurate mass ions and identified 97% of 170 pesticides in ginseng at 25 ng/g. A targeted screen of either ginseng or spinach found 94-95% of pesticides fortified for analysis at 10 ng/g with GC/MS/MS or LC/MS/MS using multiple reaction monitoring (MRM) procedures. Orbitrap-MS successfully found 89% of 177 fortified pesticides in spinach at 25 ng/g using a targeted search of accurate mass pseudomolecular ions in the positive electrospray ionization mode. A comprehensive GCxGC/TOF-MS system provided separation and identification of 342 pesticides and metabolites in a single 32 min acquisition with standards. Only 67 or 81% of the pesticides were identified in ginseng and spinach matrixes at 25 ng/g or 10 ng/g, respectively. MS/MS or qTrap-MS operated in the MRM mode produced the lowest false-negative rates, at 10 ng/g. Improvements to instrumentation, methods, and software are needed for efficient use of nontargeted screens in parallel with triple quadrupole MS.  相似文献   

3.
The applicability of comprehensive two-dimensional gas chromatography (GCxGC) for sterol analysis was investigated by separation and identification of endogenous sterols in standards, and spiked in human urine. The modulation temperature was optimized to achieve the best separation and signal enhancement. The separation pattern of trimethylsilyl (TMS) derivatives of sterols was compared on two complementary column sets. Whilst the BPX5/BPX50 column set offers better overall separation, BPX50/BPX5 provides better peak shape and sensitivity. Comparison of the identification power of GCxGC-TOFMS against both the NIST05 MS library and a laboratory created (in-house) TOFMS library was carried out on a free sterols extract of urine, derivatised and spiked at the World Anti-Doping Agency (WADA) limit of 2 ng mL(-1). The average match quality for 19 analysed sterols on the BPX50/BPX5 column set was 950/1000 when searched against the in-house library; only four were identified against the NIST05 library, at a match threshold of 800. The match quality of GCxGC-TOFMS spectra was superior to that for analysis using 1D GC-TOFMS for sterols spiked in urine at 10 ng mL(-1). An r(2)>0.997 was obtained for the concentration range between 0.25 ng mL(-1) and 10 ng mL(-1) for three selected sterols. The lowest limit of detection (LOD) was obtained for estrone (0.1 ng mL(-1)) and the highest LOD was for 5alpha-androstan-3alpha,11beta-diol-17-one, epitestosterone and cholesteryl butyrate (1 ng mL(-1)), using a match threshold of at least 800 and signal-to-noise ratio of at least 10. TOFMS coupled to GCxGC enabled satisfactory identification of sterols in urine at their LOD. A minimum acceptable match (MAM) criterion for urinary sterols using 2D retention times and TOF mass spectra is introduced. This study shows that GCxGC-TOFMS yields high specificity for steroids derived from urine, with detection limits appropriate for use in doping control.  相似文献   

4.
A sample of tobacco essential oil was analyzed using gas chromatography-mass spectrometry (GC/MS) and comprehensive two-dimensional gas chromatography coupled to a time-of-flight mass spectrometry (GC × GC/TOFMS), respectively. In the GC/MS analysis, serially coupled columns were used. By comparing the GC/MS results with GC × GC/TOFMS results, many more components in the essential oil could be found within the two-dimensional separation space of GC × GC. The quantitative determination of components in the essential oil was performed by GC × GC with flame ionization detection (FID), using a method of multiple internal standards calibration.  相似文献   

5.
In general, petrochemical products contain only a limited number of chemical classes of compounds (sample dimensionality). The enormous number of individual components within these classes, however, soon puts limitations upon a single chromatographic technique when it comes to adequate characterization of these products. Comprehensive two-dimensional gas chromatography (GC×GC) clearly opens the possibility of estimating the composition of hydrocarbon mixtures in a far more detailed fashion than hitherto possible. Although the emphasis of papers of GCxGC thus far almost exclusively applies to the unsurpassed peak-capacity, in the oil industry there is a need for characterization, rather than for analyzing all the individual compounds. In principle a GCxGC system can provide an almost perfect match between its intrinsic properties and the dimensionality of oil samples. To establish the applicability of GCxGC towards petrochemical analytical challenges, a commercially aavailable prototype instrument was subjected to an exhaustive characterization of a typical hydrocarbon precess stream and a fast characterization of a light gas oil. Although there are no fundamental limitations towards the quantitative aspects of a GCxGC system, this paper confines itself to qualitative results only. Quantitative aspects of GCxGC will be published in a forthcoming paper.  相似文献   

6.
Successful remediation of oil-contaminated soils relies on a sound preceding characterization of the oil chemical composition and physicochemical properties. Comprehensive two-dimensional gas chromatography with flame ionization detection (GCxGC/FID) is known to be very suitable for the analysis of complex samples such as petroleum hydrocarbons. However, in spite of the high-separation power offered by GCxGC, it fails to completely separate certain hydrocarbon groups in petroleum hydrocarbon mixtures. This hampers a detailed chemical composition assessment which can lead to wrong conclusions on the behaviour of the oil in soil systems, e.g. biological degradability and water solubility. This paper describes a high-performance liquid chromatography (HPLC) system with a silver-modified column as a prefractionation step to GCxGC to improve chemical identification. With HPLC, the petroleum hydrocarbons were baseline separated into a saturated fraction (including alkanes and cycloalkanes) and an unsaturated fraction (including alkenes, aromatic hydrocarbons and heterocyclic components). Each fraction eluted in a small time window limiting the dilution caused by HPLC. The two fractions were collected and quantitatively analyzed with GCxGC/FID. Cold splitless injection of 4 microl was adopted to compensate the dilution caused by the prefractionation step. With oil-spiked soil samples, a good reproducibility was obtained (RSD=3.5%; n=7) and the recovery was satisfactory (87.7%).  相似文献   

7.
A method is described for automating the regulation of cold jet flow of a comprehensive two-dimensional gas chromatograph (GCxGC) configured with flame ionization detection. This new capability enables the routine automated separation, identification, and quantitation of hydrocarbon types in petroleum fractions extending into the vacuum gas oil (VGO) range (IBP-540 degrees C). Chromatographic data acquisition software is programmed to precisely change the rate of flow from the cold jet of a nitrogen cooled loop modulator of a GCxGC instrument during sample analysis. This provides for the proper modulation of sample compounds across a wider boiling range. The boiling point distribution of the GCxGC separation is shown to be consistent with high temperature simulated distillation results indicating recovery of higher boiling semi-volatile VGO sample components. GCxGC configured with time-of-flight mass spectrometry is used to determine the molecular identity of individual sample components and boundaries of different molecular types.  相似文献   

8.
Eupatorium cannabinum subsp. corsicum (L.), an aromatic plant, is an endemic subspecies from Corsica. The essential oil from aerial parts of E. cannabinum subsp. corsicum was studied by GC, GC/MS and 13C NMR. One hundred and forty-seven components were identified representing 93.6% of the total amount. The main constituents are germacrene D (28.5%), alpha-phellandrene (19.0%) and para-cymene (5.2%). A particularity of this essential oil is the presence of monoterpene esters derived from nerol, lavandulol, borneol, thymol and 8,9-dehydrothymol. These compounds have been investigated using GC/MS in different ionization modes like electron impact (EI), positive chemical ionization (PCI) and negative chemical ionization (NCI).  相似文献   

9.
Environmental chemists have been challenged for over 30 years to analyse complex mixtures of halogenated organic pollutants like polychlorinated biphenyls (PCBs), polychlorinated alkanes (PCAs), polybrominated diphenyl ethers (PBDEs) and polychlorinated dibenzo-p-dioxins and polychlorinated furans (PCDD/Fs). Gas chromatography (GC) often proved to be the method of choice because of its high resolution. The recent developments in the field of comprehensive two-dimensional GC (GCxGC) show that this technique can provide much more information than conventional (single-column) GC. Large volume injection (e.g. by programmed temperature vaporiser, or on-column injection) can be employed for the injection of tens of microliters of sample extract, in that way substantially improving the detection limits. Electron-capture detection (ECD) is a sensitive detection method but unambiguous identification is not possible and misidentification easily occurs. Mass spectrometric (MS) detection substantially improves the identification and the better the resolution (as with MS/MS, time-of-flight (TOF) MS and high-resolution (HR)MS), the lower the chances of misidentification are. Unfortunately, this comes only with substantially higher investments and maintenance costs. Co-extracted lipids, sulphur and other interferences can disturb the GC separation and detection leading to unreliable results. Extraction, and more so, sample clean-up and fractionation, are crucial steps prior to the GC analysis of these pollutants. Recent developments in sample extraction and clean-up show that selective pressurised liquid extraction (PLE) is an effective and efficient extraction and clean-up technique that enables processing of multiple samples in less than 1h. Quality assurance tools such as interlaboratory studies and reference materials are very well established for PCDD/Fs and PCBs but the improvement of that infrastructure is needed for brominated flame retardants, PCAs and toxaphene.  相似文献   

10.
The performance of gas chromatography coupled with tandem mass spectrometry (GC/MS/MS) was tested for the simultaneous determination of twelve pyrethroid insecticides. First, a comparison of two different ionization modes, electron ionization (EI) and negative chemical ionization (NCI), was carried out using MS and MS/MS. NCI-MS/MS provided the best results in terms of selectivity and sensitivity giving very low detection limits of 0.11 to 450 fg injected. The reliability of the method was confirmed through the evaluation of quality parameters such as accuracy (70-100%), and repeatability and reproducibility, with coefficients of variation below 15% and 10%, respectively. The applicability of the GC/MS/MS method to real samples and influence of matrix effects were evaluated through the analysis of spiked water, sediment and milk at 0.25 ng L(-1) , 5 ng g(-1) dry weight (dw) and 25 ng g(-1) (dw), respectively, of each pyrethroid insecticide considered. Using GC/NCI-MS/MS, matrix spectral interferences were minimized providing method limits of detection (MLODs) of 0.05-2.59 ng L(-1) , 0.10-87.7 pg g(-1) dw, 2.29-1071 pg g(-1) lipid weight (lw) for water, sediment and milk, respectively. To the best of our knowledge, the MLOD values found in our study were better than those reported in previous studies; in particular for sediment and food samples, they were one order of magnitude lower.  相似文献   

11.
Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) has been applied for the quantitative speciation of sulfur containing compounds in gas oil (GO). For this purpose, ionization and mass spectrometric parameters have been studied and optimized with a set of standard compounds and GO samples. Comprehensive two-dimensional gas chromatography (GCxGC) was used as the reference method. To allow a quantitative comparison between FT-ICR MS and GCxGC results for GO samples, FT-ICR MS parameters were optimized and data obtained by both techniques were standardized. Response factors were established for two ionization modes: atmospheric pressure photo ionization (APPI) and electrospray after selective derivatization of sulfur compounds (MeESI). To test the validity of the developed MS methods, a third GO was analyzed and response factors were applied. Comparison with GCxGC results showed good agreement for sulfur families (deviation within 5% and 15% for MeESI and APPI data, respectively). Abundances of individual isomer groups match within 40% in most cases. These results principally demonstrate the suitability of FT-ICR MS for a quantitative analysis of sulfur compounds (by DBE and carbon number distribution pattern) in petroleum middle distillates. This approach has the potential to be extended to higher- and non-boiling petroleum fractions where quantitative speciation is presently not available.  相似文献   

12.
A gas chromatography/mass spectrometry (GC/MS) method is described which uses negative ion chemical ionization (NCI) and tandem mass spectrometry (MS/MS) for the determination of eight anabolic steroids in human urine. Eight anabolic steroids were derivatized by heptafluorobutyric anhydride (HFBA), and were determined using GC/NCI-MS and GC/NCI-MS/MS. The linear correlation coefficients for calibration in NCI-MS/MS were in the range 0.9880-0.9988. This method of derivatization with HFBA for use with GC/NCI was useful in determinations of 19-norandrosterone, boldenone, 19-noretiocholanolone, 2-methylandrosterone, nandrolone, 1-methyleneandrosterone, 1-methylandrosterone, 4-dihydroboldenone and mesterolone. The detection limits of this procedure were 5-20 ppb at a signal-to-noise (S/N) ratio of 3.  相似文献   

13.
Soft laser photo-ionization mass spectrometry is presented as a separation dimension hyphenated with gas chromatographic techniques. Single photon ionization (SPI) is a universal soft ionization method which ionizes organic molecules with an ionization potential below 10.5 eV if 118 nm laser radiation is used. The inherently soft ionization of photo ionization techniques can further be utilized together with gas chromatography as a comprehensive two-dimensional separation method (GC x MS), using the GC retention time as first separation dimension and the molecular mass as second separation dimension. Some GC x MS chromatograms of diesel petroleum samples using SPI are presented and discussed. Finally, it is demonstrated that the coupling of soft SPI mass spectrometry with comprehensive two-dimensional gas chromatography (GC x GC) provides a three-dimensional separation technique (GC x GC x SPI-MS).  相似文献   

14.
The use of gas chromatography coupled to high‐resolution magnetic sector mass spectrometers (GC‐HRMS) is well established for dioxin and furan analysis. However, the use of gas chromatography coupled to triple quadrupole (MS/MS) and time of flight (TOF) mass spectrometers with atmospheric pressure ionization (API) and traditional electron ionization (EI) for dioxin and furan analysis is emerging as a viable alternative to GC‐HRMS screening. These instruments offer greater versatility in the lab for a wider range of compound identification and quantification as well as improved ease of operation. The instruments utilized in this study included 2 API‐MS/MS, 1 traditional EI‐MS/MS, an API‐quadrupole time of flight mass spectrometer (API‐QTOF), and a EI‐high‐resolution TOF (EI‐HRTOF). This study compared these 5 instruments to a GC‐HRMS using method detection limit (MDLs) samples for dioxin and furan analysis. Each instrument demonstrated acceptable MDL values for the 17 chlorinated dioxin and furans studied. The API‐MS/MS instruments provide the greatest overall improvement in MDL value over the GC‐HRMS with a 1.5 to 2‐fold improvement. The API‐QTOF and EI‐TOF demonstrate slight increases in MDL value as compared with the GC‐HRMS with a 1.5‐fold increase. The 5 instruments studied all demonstrate acceptable MDL values with no MDL for a single congener greater than 5 times that for the GC‐HRMS. All 5 instruments offer a viable alternative to GC‐HRMS for the analysis of dioxins and furans and should be considered when developing new validated methodologies.  相似文献   

15.
Combining qualitative data from the chromatographic structure of 2-D gas chromatography with flame ionization detection (GC×GC-FID) and that from gas chromatography-mass spectrometry (GC/MS) should result in a more accurate assignment of the peak identities than the simple analysis by GC/MS, where coelution of analytes is unavoidable in highly complex samples (rendering spectra unsuitable for qualitative purposes) or for compounds in very low concentrations. Using data from GC×GC-FID combined with GC/MS can reveal coelutions that were not detected by mass spectra deconvolution software. In addition, some compounds can be identified according to the structure of the GC×GC-FID chromatogram. In this article, the volatile fractions of fresh and dehydrated pineapple pulp were evaluated. The extraction of the volatiles was performed by dynamic headspace extraction coupled to solid-phase microextraction (DHS-SPME), a technique appropriate for slurries or solid matrices. Extracted analytes were then analyzed by GC×GC-FID and GC/MS. The results obtained using both techniques were combined to improve compound identifications.  相似文献   

16.
We report the characterization of a recently introduced hybrid ionization source, matrix-assisted laser desorption electrospray ionization (MALDESI), coupled to a quadrupole Fourier transform ion cyclotron resonance mass spectrometry (QFT-ICR-MS) system. We first demonstrate the ability of MALDESI-QFT-ICR MS to directly analyze and provide high mass measurement accuracy (approximately 1 part-per-million) of a polypeptide using internal calibration. Second, we show the potential of MALDESI-QFT-ICR MS for the top-down characterization of multiply charged polypeptide cations. Finally, we demonstrate sub-femtomole detection limits in MALDESI-QFT-ICR MS using a combination of naturally occurring peptides and their respective stable isotope labeled forms. The results presented herein demonstrate the feasibility of several potential applications for MALDESI-QFT-ICR MS for the direct analysis of intact biological molecules.  相似文献   

17.
The combination reaction of linear and branched alkanes, initiated by dicumylperoxide, has been studied as a model for the combination cross-linking reaction of peroxide-cured terpolymerised ethylene, propylene and diene monomer. Both gas chromatography-mass spectrometry (GC-MS) and comprehensive two-dimensional GC-MS (GCxGC-MS) analyses have been employed to analyse the isomeric reaction products. The identification of these products based on their MS fragmentation patterns is quite complex, due to the high tendency of random rearrangements. Careful elucidation of the high-mass ions at optimised ionisation energy (55eV) has resulted in proposed structures for the different isomeric reaction products. The structure assignment by MS is in agreement with the GCxGC elution pattern and with the result of a theoretical model to predict the boiling points and, thus, the GC retention times. In addition, a model that provided a direct correlation between chemical structure and retention times was developed and this was found to provide a useful fit. Quantification of the identified reaction products by GC separation and flame ionization detection allows classification according to the hydrogen abstraction sites for the alkanes by dicumylperoxide. The selectivity for hydrogen abstraction generally follows the expected order, but a higher reactivity was observed for the methylene group next to a primary methyl group, while a reduced reactivity of the methylene group next to ethyl and to methyl groups was observed. The used approach proved to be a very powerful tool to enhance our understanding of the mechanism of peroxide cross-linking of (branched) alkanes.  相似文献   

18.
In this paper, we compare the current separation power of comprehensive two-dimensional gas chromatography (GCxGC) with the potential separation power of GC-mass spectrometry (GC-MS) systems. Using simulated data, we may envisage a GC-MS contour plot, that can be compared with a GCxGC chromatogram. Real examples are used to demonstrate the current potential of the two techniques in the field of hydrocarbon analysis. As a separation technique for complex hydrocarbon mixtures, GCxGC is currently about as powerful as GC-MS is potentially powerful. GC-MS has not reached its potential separation power in this area, because a universal, soft ionization method does not exist. The greatest advantage of GCxGC is, however, its potential for quantitative analysis. Because flame-ionisation detection can be used, quantitative analysis by GCxGC is much more robust, reliable and reproducible.  相似文献   

19.
A new analytical approach, based on derivatization with 2,2,2-trichloroethyl chloroformate and gas chromatography/mass spectrometry (GC/MS), was investigated for qualitative and quantitative analyses of a large range of amphetamine-related drugs and ephedrines in plasma, urine and hair samples. Sample preparation involved alkaline extraction of analytes from biological samples using Extrelut columns, after addition of the internal standard 3,4-methylenedioxypropylamphetamine (MDPA), and subsequent derivatization to produce 2,2,2-trichloroethylcarbamates. GC/MS analyses, in splitless mode using a slightly polar 30-m capillary column, were performed with quadrupole or ion trap instruments. MS acquisition modes were electron ionization (EI) in full-scan or selected ion monitoring (SIM) modes (quadrupole), and full-scan MS or MS/MS modes with chemical ionization (CI) conditions (ion trap). EI spectra of 2,2,2-trichloroethylcarbamates showed variably abundant molecular ions as well as abundant diagnostic fragment ions, both characterized by ion clusters reflecting the isotope distribution of three chlorine atoms in the derivatized molecules. CI spectra showed abundant protonated molecules. Quantitative studies using EI SIM conditions gave recoveries in the range 74-89%, linear response over ranges of 10-2000 ng/mL (plasma and urine) and 0.20-20 ng/mg (hair), with corresponding limits of detection in the ranges 2-5 ng/mL and 0.1-0.2 ng/mg. Potential applications (following full method validation) include clinical and forensic toxicology, as well as doping control.  相似文献   

20.
Differentiation of new psychoactive substance (NPS), 6‐(2‐methylaminopropyl)benzofuran (6‐MAPB), and its positional isomer, 2‐(2‐methylaminopropyl)benzofuran (2‐MAPB), by means of gas chromatography/mass spectrometry (GC/MS) with quadrupole detection is ambiguous. Reliable distinguishing of the two isomers could be achieved by MS/MS spectra recorded after collision‐induced dissociation (CID) of precursor ions. Both electron ionization (EI) and electrospray ionization (ESI) methods could be used for these purposes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号