首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
2.
Tungsten oxide (WO3) has received ever more attention and has been highly researched over the last decade due to its being a low-cost transition metal semiconductor with tunable, yet widely stable, band gaps. This minireview briefly highlights the challenges in the design and synthesis of porous WO3 including methods, precursors, solvent effects, crystal phases, and surface activities of the porous WO3 base material. These topics are explored while also drawing a connection of how the morphology and crystal phase affect the band gap. The shifts in band gap not only impact the optical properties of tungsten but also allow tuning to operate on different energy levels, which makes WO3 highly desirable in many applications such as supercapacitors, batteries, solar cells, catalysts, sensors, smart windows, and bioapplications.  相似文献   

3.
4.
5.
Due to their unique layered microstructure, the presence of various functional groups at the surface, earth abundance, and attractive electrical, optical, and thermal properties, MXenes are considered promising candidates for the solution of energy- and environmental-related problems. It is seen that the energy conversion and storage capacity of MXenes can be enhanced by changing the material dimensions, chemical composition, structure, and surface chemistry. Hence, it is also essential to understand how one can easily improve the structure–property relationship from an applied point of view. In the current review, we reviewed the fabrication, properties, and potential applications of MXenes. In addition, various properties of MXenes such as structural, optical, electrical, thermal, chemical, and mechanical have been discussed. Furthermore, the potential applications of MXenes in the areas of photocatalysis, electrocatalysis, nitrogen fixation, gas sensing, cancer therapy, and supercapacitors have also been outlooked. Based on the reported works, it could easily be observed that the properties and applications of MXenes can be further enhanced by applying various modification and functionalization approaches. This review also emphasizes the recent developments and future perspectives of MXenes-based composite materials, which will greatly help scientists working in the fields of academia and material science.  相似文献   

6.
7.
8.
9.
《Comptes Rendus Chimie》2018,21(12):1121-1132
The recent effervescent impetus in the spin transition research field is associated with the prodigious multidisciplinary effort that is carried out by different research groups all over the world. Indeed, more and more groups are working in this exciting research field. Nevertheless, this renewed interest also reflects the evolution of the characterization techniques that have been used since the earliest studies of these molecular-based switchable materials. Indeed, we have passed from traditional characterization methods such as UV–vis and Mössbauer spectroscopy or torque magnetometers to the most advanced techniques that are even capable to monitor a spin transition in a single molecule (e.g., X-ray diffraction, X-ray photoelectron spectroscopy, scanning tunneling microscopy, etc.). In this study, we will focus on the basis and the evolution of three critical macroscopic tools, i.e. the optical, magnetic, and calorimetric characterization methods.  相似文献   

10.
11.
Herein we show a density functional theory-based study performed on two recently predicted polymorphs of the BeH2 monolayer, α-BeH2 and β-BeH2. The α-BeH2 phase possesses an in-plane negative Poisson's ratio (NPR), introducing it into the unique group of auxetic materials. Our assessment delves into the linear-elastic and finite-strain regimes to understand both polymorphs' structural and mechanical responses to deformation. We find that the in-plane NPR is shown to be only parallel to the bonds in α-BeH2 and remains along the uniaxial tensile path. Concomitantly, an out-of-plane transition toward auxetic is also revealed in regions exhibiting conventional Poisson's ratios, making α-BeH2 a bidirectionally auxetic material. While phase transitions in β-BeH2 are triggered at very short strains, α-BeH2 displays excellent elasticity against tension, superior to that of most currently known 2D materials.  相似文献   

12.
本文通过总结分析当今发光材料研究进展,阐述了有机、无机荧光材料的特点并对主要荧光材料的最新进展进行概述。重点分析了以介孔材料为载体的复合荧光材料的优点及其研究现状与进展。  相似文献   

13.
李策  郗既明  卢振中  张锐  黄岭 《无机化学学报》2023,39(12):2425-2431
具有可逆颜色变化和适当变色寿命的光致变色材料对于无墨水和可擦除打印技术十分重要。我们将1,4,5,8-萘四羧酸二酐与甲硫氨酸结合,设计了一种基于1,4,5,8-萘二酰胺(NDI)的桥联有机配体(H2ncm),并以Zn2+和H2ncm为原料,通过溶剂热反应合成了2种配位聚合物。化合物[Zn(ncm)(H2O)4]·2DMF (1)包含1个Zn2+、1个ncm2-配体、4个配位水分子和2个DMF分子。Zn2+处于八面体的配位环境中,并通过ncm2-配体连接形成链状结构。化合物[Zn2(ncm)2(H2O)4] (2)包含2个Zn2+、2个ncm2-配体和4个配位水分子。2个Zn2+原子通过2个羧基桥联形成双核结构,并进一步通过ncm2-配体连接形成二维层结构。2显示出从黄色到深棕色的光致变色现象。这种光诱导产生的颜色可以稳定至少3周,但在70 ℃加热时在5 min内即可恢复本来的颜色。我们证明了这种光致变色是源于光照射下NDI·自由基的产生。  相似文献   

14.
Adhesives that selectively debond from a surface by stimuli‐induced head‐to‐tail continuous depolymerization of poly(benzyl ether) macro‐cross‐linkers within a poly(norbornene) matrix are described. Continuous head‐to‐tail depolymerization provides faster rates of response than can be achieved using a small‐molecule cross‐linker, as well as responses to lower stimulus concentrations. Shear‐stress values for glass held together by the adhesive reach 0.51±0.10 MPa, whereas signal‐induced depolymerization via quinone methide intermediates reduces the shear stress values to 0.05±0.02 MPa. Changing the length of the macro‐cross‐linkers alters the time required for debonding, and thus enables the programmed sequential release of specific layers in a glass composite material.  相似文献   

15.
Gupta JG  Bertrand NB 《Talanta》1995,42(12):1947-1957
A new method has been developed for the rapid determination of traces of Ba, Cs, Ga, Hf, In, Mo, Nb, Pb, Rb, Sn, Sr, Ta and Tl in silicate rocks and lake, stream and river sediments. The method involved dissolution of samples in a microwave oven by heating in a pressure decomposition Teflon vessel with a mixture of HF + HNO3 + HCl + H3BO3 + EDTA followed by direct multielement determination using inductively coupled plasma-mass spectrometry (ICP/MS). The method is faster than conventional dissolution of samples by open vessel acid digestion and fusion and determination by instrumental methods. The accuracy and precision of the developed method were tested by replicate analyses of a number of international geochemical reference samples of established trace element contents. Satisfactory correlation with the “recommended” or “consensus” values was found and recoveries were in most cases 95–100%. New values for Ga, In, Nb and Tl in several international geochemical reference materials are first reported in this paper.  相似文献   

16.
借助密度泛函理论,用B3LYP和BP86方法,对一系列潜在的新型高能密度材料分子H2N5MN5H2(M=Be,Mg,Ca,Zn,和Cd)进行了理论预测研究.结果表明,这些材料分子都非常稳定,不容易分解,其中H2N5BeN5H2最稳定.金属离子的配位作用对化合物的稳定起了重要作用.配体H2N5也因从金属M获得一个电子变成H2N5-离子而变得更稳定.  相似文献   

17.
Two readily accessible thienothiophene–triphenylamine charge‐transport materials have been synthesized by simply varying the substitution pattern of the triphenylamine groups on a central thienothiophene π‐linker. The impact of the substitution pattern on the thermal, photoelectrochemical, and photovoltaic properties of these materials was evaluated and, based on theoretical and experimental studies, we found that the isomer in which the triphenylamine groups were located at the 2,5‐positions of the thienothiophene core ( TT‐2,5‐TPA ) had better π‐conjugation than the 3,6‐isomer ( TT‐3,6‐TPA ). Whilst the thermal, morphological, and hydrophobic properties of the two materials were similar, their optoelectrochemical and photovoltaic properties were noticeably impacted. When applied as hole‐transport materials in hybrid perovskite solar cells, the 2,5‐isomer exhibited a power‐conversion efficiency of 13.6 %, much higher than that of its 3,6‐counterpart (0.7 %) under the same standard conditions.  相似文献   

18.
刘杰  曾渊  张俊  张海军  刘江昊 《化学进展》2019,31(5):667-680
石墨烯具有单层碳原子组成的六方晶系晶体结构及独特的电学、化学、力学和热学性质。然而,由于石墨烯片层之间较强的π-π键和范德华力,导致易团聚或堆积,使其比表面积大幅减小,严重损害其性能。解决上述问题的最有效方法之一是构建具有多孔结构的三维石墨烯基材料,不仅保留了石墨烯优秀的导电性能和力学性能等本征特性,而且获得密度低、比表面积大、孔隙率高等结构优点,进而满足吸附剂、催化剂载体、生物传感器及电池与超级电容器电极材料等先进功能材料领域的应用需要。因此,开发三维石墨烯基材料的先进制备方法成为本领域研究的热点方向。本文综述了三维石墨烯基材料的现有制备方法,包括自组装法(水热还原法、化学还原法及冷冻干燥法)、模板法(胶体模板法、模板辅助化学气相沉积法及模板辅助水热还原法)和3D打印法(直写成型法、喷墨打印法、熔融沉积成型法、光固化成型法、选区激光烧结法及选区激光熔融法),总结了上述方法的优点及当前存在的主要问题,并且对三维石墨烯基材料制备技术的发展方向进行了展望。  相似文献   

19.
20.
Published data on the synthesis and structural modification of spiropyrans and bisspiropyrans and production of the heteroanalogs of spiropyrans are classified and analyzed. The chemical characteristics of spiropyrans, including complexation of the open-chain isomers and cyclic forms are examined. Special attention is paid to the photochromic characteristics of spiropyrans at interfaces between phases.Dedicated to our tutor Academician V. I. Minkin on the occasion of his 70th birthday.__________Translated from Khimiya Geterotsiklicheskikh Soedinenii, No. 3, pp. 323–359, March, 2005.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号