首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The Cuban chromites with a spinel structure, FeCr2O4 have been studied using optical absorption and EPR spectroscopy. The spectral features in the electronic spectra are used to map the octahedral and tetrahedral co-ordinated cations. Bands due Cr3+ and Fe3+ ions could be distinguished from UV-vis spectrum. Chromite spectrum shows two spin allowed bands at 17,390 and 23,810 cm(-1) due to Cr3+ in octahedral field and they are assigned to 4A2g(F) --> 4T2g(F) and 4A2g(F) --> 4T1g(F) transitions. This is in conformity with the broad resonance of Cr3+ observed from EPR spectrum at g = 1.903 and a weak signal at g = 3.861 confirms Fe3+ impurity in the mineral. Bands of Fe3+ ion in the optical spectrum at 13,700, 18,870 and 28,570 cm(-1) are attributed to 6A1g(S) --> 4T1g(G), 6A1g(S) --> 4T2g(G) and 6A1g(S) --> 4T2g(P) transitions, respectively. Near-IR reflectance spectroscopy has been used effectively to show intense absorption bands caused by electronic spin allowed d-d transitions of Fe2+ in tetrahedral symmetry, in the region 5000-4000 cm(-1). The high frequency region (7500-6500 cm(-1)) is attributed to the overtones of hydroxyl stretching modes. Correlation between Raman spectral features and mineral chemistry are used to interpret the Raman data. The Raman spectrum of chromite shows three bands in the CrO stretching region at 730, 560 and 445 cm(-1). The most intense peak at 730 cm(-1) is identified as symmetric stretching vibrational mode, A1g(nu1) and the other two minor peaks at 560 and 445 cm(-1) are assigned to F2g(nu4) and E(g)(nu2) modes, respectively. Cation substitution in chromite results various changes both in Raman and IR spectra. In the low-wavenumber region of Raman spectrum a significant band at 250 cm(-1) with a component at 218 cm(-1) is attributed F2g(nu3) mode. The minor peaks at 195, 175, 160 cm(-1) might be due to E(g) and F2g symmetries. Broadening of the peak of A1g mode and shifting of the peak to higher wavenumber observed as a result of increasing the proportion of Al3+O6. The presence of water in the mineral shows bands in the IR spectrum at 3550, 3425, 3295, 1630 and 1455 cm(-1). The vibrational spectrum of chromite gives raise to four frequencies at 985, 770, 710 and 650 cm(-1). The first two frequencies nu1 and nu2 are related to the lattice vibrations of octahedral groups. Due to the influence of tetrahedral bivalent cation, vibrational interactions occur between nu3 and nu4 and hence the low frequency bands, nu3 and nu4 correspond to complex vibrations involving both octahedral and tetrahedral cations simultaneously. Cr3+ in Cuban natural chromites has highest CFSE (20,868 cm(-1)) when compared to other oxide minerals.  相似文献   

2.
以有序介孔碳(OMC)为载体,采用共沉淀法制备了OMC/NiCo2O4复合物.用X射线衍射(XRD)、傅里叶变换红外(FT-IR)光谱和透射电镜(TEM)研究其结构与形貌,发现NiCo2O4纳米颗粒均匀地负载在有序介孔碳上.循环伏安和恒流充放电测试表明,NiCo2O4质量分数为40%时,在1A·g-1的电流密度下,复合物电极的比电容可以达到577.0F·g-1,电流密度为8A·g-1时,比电容可以达到470.8F·g-1,并具有良好的循环稳定性.在2A·g-1的电流密度下,经过2000次循环后,比电容还可达到508.4F·g-1,电容保持率为92.7%.  相似文献   

3.
In the present work, supercapacitors based on graphene/Pt films show especially high rate capability (120 F g(-1) even at 50 A g(-1)) and cyclability (no attenuation over 10,000 cycles) and peculiar nanosphere morphology after electrochemical cycling. Furthermore, supercapacitors based on the graphene powder with a binder exhibit high specific capacitance (249 F g(-1) at 0.1 A g(-1)), long cycle life (no attenuation over 40,000 cycles) and high rate capability (150 F g(-1) even at 50 A g(-1)), which are much better than those of most graphene electrode materials. These indicate the great potential of the cysteine reduced graphene electrodes in energy storage.  相似文献   

4.
Self-assembled graphene organogel (SGO) with 3-dimensional (3D) macrostructure was prepared by solvothermal reduction of a graphene oxide (GO) dispersion in propylene carbonate (PC). This SGO was used as an electrode material for fabricating supercapacitors with a PC electrolyte. The supercapacitor can be operated in a wide voltage range of 0-3 V and exhibits a high specific capacitance of 140 F g(-1) at a discharge current density of 1 A g(-1). Furthermore, it can still keep a specific capacitance of 90 F g(-1) at a high current density of 30 A g(-1). The maximum energy density of the SGO based supercapacitor was tested to be 43.5 Wh kg(-1), and this value is higher than those of the graphene based supercapacitors with aqueous or PC electrolytes reported previously. Furthermore, at a high discharge current density of 30 A g(-1), the energy and power densities of the supercapacitor were measured to be 15.4 Wh kg(-1) and 16,300 W kg(-1), respectively. These results indicate that the supercapacitor has a high specific capacitance and power density, and excellent rate capability.  相似文献   

5.
We report the preparation of a nickel-foam-supported graphene sheet/porous NiO hybrid film by the combination of electrophoretic deposition and chemical-bath deposition. The obtained graphene-sheet film of about 19 layers was used as the nanoscale substrate for the formation of a highly porous NiO film made up of interconnected NiO flakes with a thickness of 10-20 nm. The graphene sheet/porous NiO hybrid film exhibits excellent pseudocapacitive behavior with pseudocapacitances of 400 and 324 F g(-1) at 2 and 40 A g(-1), respectively, which is higher than those of the porous NiO film (279 and 188 F g(-1) at 2 and 40 A g(-1)). The enhancement of the pseudocapacitive properties is due to reinforcement of the electrochemical activity of the graphene-sheet film.  相似文献   

6.
We demonstrate a simple and scalable strategy for synthesizing hierarchical porous NiCo(2)O(4) nanowires which exhibit a high specific capacitance of 743 F g(-1) at 1 A g(-1) with excellent rate performance (78.6% capacity retention at 40 A g(-1)) and cycling stability (only 6.2% loss after 3000 cycles).  相似文献   

7.
Ultrafine MnO(2) nanowires with sub-10 nm diameters have been synthesized by a simple process of hydrothermal treatment with subsequent calcinations to form networks that exhibit an enhanced specific capacitance (279 F g(-1) at 1 A g(-1)), high rate capability (54.5% retention at 20 A g(-1)) and good cycling stability (1.7% loss after 1000 cycles).  相似文献   

8.
Direct near-IR excitation of Yb(3+) 2F(7/2)-->(2)F(5/2) levels at 10126, 10138, and 10596 cm(-1) in CsMnBr3:0.5%Yb(3+) leads to three types of luminescence at cryogenic temperatures: near-IR Yb(3+) emission and green and red upconverted luminescence. The green luminescence around 20 000 cm(-1) is identified as cooperative Yb(3+) pair upconversion. The broad red upconversion luminescence band centered at 14 700 cm(-1) is ascribed to the 4T(1g)-->6A(1g) transition of Mn(2+). Pulsed measurements indicate a sequence of ground-state absorption and excited-state absorption steps for the red upconversion process. One- and two-color excitation experiments support this, and we conclude that the red upconversion occurs by an exchange mechanism involving Yb(3+) and Mn(2+). The Yb(3+) 2F(5/2)-->(2)F(7/2) near-IR emission around 10 000 cm(-1) is also observed after Mn(2+) excitation at 21 838 cm(-1). This is indicative of a Mn(2+) 4T(1g)--> Yb(3+) 2F(5/2) relaxation process, which is a potential loss process for upconversion efficiency.  相似文献   

9.
It has been experimentally determined that Cs2ZrCl6:Os4+ shows luminescence and up-converted luminescence from the highest t(2g) (4) excited level 2 A1g(1A1g), whereas Cs2GeF6:Os4+ 2 A1g(1A1g) does not luminescence at all. Ab initio quantum chemical calculations on these materials are presented here and show that the variation of the energy gap between the t2g 4 and t2g 3 eg 1 manifolds with F to Cl chemical substitution is a key factor to interpret the experimental findings. This energy gap is calculated to be some 1500 cm(-1) (approximately 2nua1g) in the fluoride host, whereas it is about 3300 cm(-1) (approximately 9nua1g) in the chloride host. The calculated values for the ground state totally symmetric vibrational frequency nu(a1g) are 626 cm(-1) (Cs2GeF6:Os4+) and 355 cm(-1) (Cs2ZrCl6:Os4+), in good agreement with the available experimental data. Geometrical structure of (OsX6)2- clusters (X=F,Cl) embedded in Cs2GeF6 and Cs2ZrCl6 lattices is calculated as well. New assignments for some spectral features based in the results of our calculations are proposed.  相似文献   

10.
Rotationally resolved pulsed field ionization and zero electronic kinetic energy photoelectron spectra for the transition F(2) (+)(X (2)Pi(g))<--F(2)(X (1)Sigma(g) (+)) have been recorded using the extreme ultraviolet coherence radiation. The vibrational energy spacings, rotational constants, and spin orbit coupling constants for the first three vibrational states of F(2) (+)(X (2)Pi(g)) have been determined accurately. The first adiabatic ionization potential (IP) of F(2) is determined as IP(F(2))=126 585.7+/-0.5 cm(-1). To determine the threshold E(tipp) for ion-pair production of F(2), the images of F(-)((1)S(0)) in the velocity mapping conditions have also been recorded at the photon energy of 126 751 cm(-1). Taking the Stark effect into account, the E(tipp) is determined as E(tipp)(F(2))=126 045+/-8 cm(-1) (15.628+/-0.001 eV). By combing the IP(F(2)) and the E(tipp)(F(2)) determined in this work and together with the reported ionization potential and electronic affinity of the F atom, the bond dissociation energies of F(2) and F(2) (+) are determined as D(0)(F(2))=1.606+/-0.001 eV and D(0)(F(2) (+))=3.334+/-0.001 eV, respectively.  相似文献   

11.
A nickel hydroxide electrode with open-ended hexagonal nanotube arrays, prepared by hydrolysis of nickel chloride in the presence of hexagonal ZnO nanorods, shows a very high capacitance of 1328 F g(-1) at a discharge current density of 1 A g(-1) due to the significantly improved ion transport.  相似文献   

12.
We report a stainless steel/multi walled carbon nanotubes/polyaniline (SLS/MWCNTs/PANI) capacitor electrode capable of operating in a physiological electrolyte and in serum. The specific capacitance of SLS/MWCNTs/PANI reaches 401 F g(-1) in the physiological electrolyte and 326 F g(-1) in serum. The capacity loss at 6.4 μA mm(-2) over 2000 cycles is 10% in the physiological electrolyte and 21% in serum.  相似文献   

13.
An amorphous MnO(2)·nH(2)O/microporous carbon spheres (α-MnO(2)·nH(2)O/MCS) composite electrode material is prepared by a chemical co-precipitation method. It is observed that the amorphous MnO(2) particles are deposited on the surface of the MCS, which form a network with a uniquely developed three-dimensional open porous system containing macropores, mesopores and micropores. The electrochemical measurements reveal that the composite electrode material presents a much more stable and reversible capacitance behavior compared to the pure α-MnO(2)·nH(2)O in 1 M of Na(2)SO(4) electrolyte. The composite containing 25 wt% MCS exhibits optimal specific capacitance of 218.2 F g(-1) at 2 mV s(-1), and is still as high as 112.4 F g(-1) at 100 mV s(-1), while a drastic reduction from 197.0 F g(-1) at 2 mV s(-1) to only 40.7 F g(-1) at 100 mV s(-1) occurs for the pure α-MnO(2)·nH(2)O. The composite also shows a rather high electrode-specific capacitance of 3.13 F cm(-2) and a long cycle life. The remarkable enhancement in the electrochemical performance is mainly attributed to the microporous structure of the MCS contributing to the deposition of MnO(2) particles on the surface of the MCS, and the uniquely developed porous network of the composite facilitating the rapid transport of the electrolyte. These factors result in the high electrochemical utilization of MnO(2), a great reduction of the equivalent series resistance, and hence the relatively high and stable electrochemical behavior.  相似文献   

14.
This paper reports on the spectral properties of Mn2+, Co2+ and Ni2+ ions doped B2O3-ZnO-PbO glasses. XRD, FT-IR spectra and DSC profiles of these glasses have also been carried out, and the FT-IR profiles have shown the presence of both BO3 and BO4 units. It is interesting to notice that the FT-IR peak positions are slightly shifted towards higher energy with an increase in transition metal ion concentration change. From the measured DSC thermograms, glass transition (T(g)), crystallization (T(c)) and temperature of melting (T(m)) have been evaluated. From the UV absorption spectra of Mn2+, Co2+ and Ni2+ ions doped glasses, both direct and indirect optical band gaps have been calculated. The visible absorption spectra of Mn2+:glasses have shown a broad absorption band at 520 nm (6A1g(S) --> 4T1g(G)); with Co2+ ions one absorption band at 605 nm (4A2(4F) --> 4T1(4P)) and another at 1450 nm (4A2(4F) --> 4T1(4F)); and for Ni2+:glasses three absorption bands at 420 nm (3A2g(F) --> 3T1g(P)), 805 nm (3A2g(F) --> 1Eg(D)) and 880 nm (3A2g(F) --> 3T1g(F)) have been observed. For Mn2+:glasses, upon excitation with 262 nm, a green emission (539 nm) with a slight blue shift; and with 392 nm, a green emission (534 nm) with a slight red shift with Mn2+ ions concentration change (0.2-0.5 mol%) has been observed. This green emission has been assigned to (4T1(G) --> 6A1(S)) d-d transition of Mn2+ ions that are in tetrahedral co-ordination. For 0.5 mol% Co2+ ions doped glass, upon excitation with 580 nm, a red emission (625 nm) has been observed which originates from 2E(2G) --> 4A2(4F) transition of Co2+ ions in tetrahedral co-ordination. For Ni2+ ions doped glasses upon excitation with 420 nm, a green (577 nm) and red (670 nm) emissions are observed and are assigned to (1T2g(D) --> 3A2g(F)) and (1T2g(D) --> 3T2g(F)) d-d transitions of Ni2+ ions in octahedral co-ordination.  相似文献   

15.
The apolar fraction F1 of Thalassia testudinum was chemically characterized by gas chromatography-mass spectrometry, which led to the identification of 43 metabolites, all of them reported for the first time in the genus Thalassia. More than 80% of the F1 composition was constituted by aromatic metabolites including the major components 1,1-bis(p-tolyl)ethane (6.0%), 4,4'-diisopropylbiphenyl (4.8%) and a 1,1-bis(p-tolyl)ethane isomer (4.7%). This lipophilic fraction was assayed for its antioxidant effects and skin protective action. In vitro assays showed that F1 strongly scavenged DPPH* (IC(50) 312.0 ± 8.0 μg mL(-1)), hydroxyl (IC(50) 23.8 ± 0.5 μg mL(-1)) and peroxyl radical (IC(50) 6.6 ± 0.3 μg mL(-1) ), as well as superoxide anion (IC(50) 50.0 ± 0.7 μg mL(-1)). Also, F1 markedly inhibited the spontaneous lipid peroxidation (LPO) in brain homogenates (IC(50) 93.0 ± 6.0 μg mL(-1)) and the LPS-stimulated nitrite generation on RAW624.7 macrophages (58.6 ± 3.2%, 400 μg mL(-1)). In agreement with these findings, its topical application at 250 and 500 μg cm(-2) strikingly reduced skin damage on mice exposed to acute UVB radiation by 45% and 70%, respectively and significantly attenuated the LPO developed following the first 48 h after acute exposure to UVB irradiation, as manifested by the decreased malondialdehide level and by the increased of reduced gluthatione content. Our results suggest that F1 may contribute to skin repair by attenuating oxidative stress due to its antioxidant activity.  相似文献   

16.
Zeolite-templated carbon is a promising candidate as an electrode material for constructing an electric double layer capacitor with both high-power and high-energy densities, due to its three-dimensionally arrayed and mutually connected 1.2-nm nanopores. This carbon exhibits both very high gravimetric (140-190 F g(-1)) and volumetric (75-83 F cm(-3)) capacitances in an organic electrolyte solution. Moreover, such a high capacitance can be well retained even at a very high current up to 20 A g(-1). This extraordinary high performance is attributed to the unique pore structure.  相似文献   

17.
吴中  黄芸  张新波 《电化学》2012,(2):151-156
应用无模板水热法制备了由超薄氧化镍纳米片组装而成的具有分级结构的多孔氧化镍,SEM观察表明经煅烧氧化镍仍保持花状球形结构.电化学测试结果表明,扫速为20 mV.s-1时,其比电容值435 F.g-1,循环1000周期之后,电容值基本没有衰减;电流密度为10 A.g-1时,其比电容值为367 F.g-1.该材料是一种有应用价值的超级电容器材料.  相似文献   

18.
Mesocellular carbon foam (MSU-F-C) is functionalized with hollow nanographite by a simple solution-phase method to enhance the intrapenetrating electrical percolation network. The electrical conductivity of the resulting material, denoted as MSU-F-C-G, is increased by a factor of 20.5 compared with the pristine MSU-F-C. Hollow graphite nanoparticles are well-dispersed in mesocellular carbon foam, as confirmed by transmission electron microscopy (TEM), and the d spacing of the (002) planes is 0.343 nm, which is only slightly larger than that of pure graphite (0.335 nm), suggesting a random combination of graphitic and turbostratic stacking. After nanographitic functionalization, the BET surface area and total pore volume decreased from 928 m(2) g(-1) and 1.5 cm(3) g(-1) to 394 m(2) g(-1) and 0.7 cm(3) g(-1), respectively. Thermogravimetric analysis in air shows that the thermal stability of MSU-F-C-G is improved relative to that of MSU-F-C, and the one-step weight loss indicates that the nanographite is homogeneously functionalized on the MSU-F-C particles. When the resulting mesocellular carbon materials are used as electrode materials for an electric double layer capacitor (EDLC), the specific capacitances (C(sp)) of the MSU-F-C and MSU-F-C-G electrodes at 4 mV s(-1) are 109 F g(-1) and 93 F g(-1), respectively. The MSU-F-C-G electrode exhibited a very high area capacitance (C(area), 23.5 μF cm(-2)) compared with that of the MSU-F-C electrode (11.7 μF cm(-2)), which is attributed to the enhanced intraparticle conductivity by the nanographitic functionalization. MSU-F-C-G exhibited high capacity retention (52%) at a very high scan rate of 512 mV s(-1), while only a 23% capacity retention at 512 mV s(-1) was observed in the case of the MSU-F-C electrode. When applied as an anode in a lithium ion battery, a significant increase in the initial efficiency (44%), high reversible discharge capacity (580 mA h g(-1)) in the lower voltage region, and a higher rate capability were observed. The high rate capability of the MSU-F-C-G electrode as charge storage was due to the low resistance derived from the nanographitic functionalization.  相似文献   

19.
2-Aminoanthraquinone (AAQ) molecules were covalently grafted onto chemically modified graphene (CMG), and the AAQ functionalized CMG sheets were self-assembled into macroporous hydrogels for supercapacitor electrodes. The electrode based on the AAQ modified self-assembled graphene hydrogel (AQSGH) showed a high specific capacitance of 258 F g(-1) at a discharge current density of 0.3 A g(-1), which is much larger than that of a pure graphene hydrogel (193 F g(-1)). Furthermore, the AQSGH electrode exhibited excellent rate capability and a long cycle life. This is mainly due to the covalently bonded AAQ moieties contributing additional redox capacitance. Furthermore, the highly conductive graphene hydrogel scaffold provided a large specific surface area for forming electric double layers and convenient routes for charge transfer and electrolyte diffusion.  相似文献   

20.
The five binuclear nickel(II) complexes have been synthesized by the Schiff base condensation of 1,8-[bis(3-formyl-2-hydroxy-5-methyl)benzyl]-l,4,8,11-tetraazacyclo-tetradecane (PC) with appropriate aliphatic diamines and nickel(II) perchlorate. All the five complexes were characterized by elemental and spectral analysis. The electronic spectra of the complexes show three d-d transition in the range of 550-1055 nm due to 3A2g→3T2g(F), 3A2g→3T1g(F) and 3A2g→3T1g(P). These spin allowed electronic transitions are characteristic of an octahedral Ni2+ center. Electrochemical studies of the complexes show two irreversible one electron reduction waves at cathodic region. The reduction potential of the complexes shifts towards anodically upon increasing the chain length of the macrocyclic ring. All the nickel(II) complexes show two irreversible one electron oxidation waves at anodic region. The oxidation potential of the complexes shift towards anodically upon increasing the chain length of the macrocyclic ring. The catalytic activities of the complexes were observed to be increase with increase the macrocyclic ring size. The observed rate constant values for the catalytic hydrolysis of 4-nitrophenyl phosphate are in the range of 5.85×10(-3) to 9.14×10(-3) min(-1). All the complexes were screened for antimicrobial activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号