首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 10 毫秒
1.
A class II atomistic force field with Lennard-Jones 6-9 nonbond interactions is used to investigate equations of state (EOS) for important high explosive detonation products N(2) and H(2)O in the temperature range of 700-2500 K and pressure range of 0.1-10 GPa. A standard sixth order parameter-mixing scheme is then employed to study a 2:1 (molar) H(2)O:N(2) mixture, to investigate, in particular, the possibility of phase separation under detonation conditions. The simulations demonstrate several important results, including (i) the accuracy of computed EOS for both N(2) and H(2)O over the entire range of temperature and pressure considered, (ii) accurate mixing-demixing phase boundary as compared to experimental data, and (iii) the departure of mixing free energy from that predicted by ideal mixing law. The results provide comparison and guidance to state-of-the-art chemical kinetic models.  相似文献   

2.
The structural and energetic characterization of metal complexes is important in catalysis and photochemical applications. Unraveling their modes‐of‐action can be greatly assisted by computation, which typically is restricted to computationally demanding methods including electronic structure calculations with density functional theory. Here, we present an empirical force field based on valence bond theory applicable to a range of octahedral Ir(III) complexes with different coordinating ligands, including iridium complexes with a chiral P,N ligand. Using an approach applicable to metal‐containing complexes in general, it is shown that with one common parametrization 85% of the 116 diastereomers—all within 21 kcal/mol of the lowest energy conformation of each series—can be correctly ranked. For neutral complexes, all diastereomers are ranked correctly. This helps to identify the most relevant diastereomers which, if necessary, can be further investigated by more demanding computational methods. Furthermore, if one specific complex is considered, the root mean square deviation between reference data from electronic structure calculations and the force field is . This, together with the possibility to carry out explicit simulations in solution paves the way for an atomistic understanding of iridium‐containing complexes in catalysis. © 2013 Wiley Periodicals, Inc.  相似文献   

3.
A new analytical form for bond and angle potentials suitable for obtaining mesoscale effective force fields from target distributions is reported. Applications to realistic coarse-grained models of atactic polystyrene and polyamide-6,6 are described. The potential optimization procedure, despite its simplicity, allows the accurate reproduction of the target atomistic distributions. The procedure has been validated for both bond and angle potentials. Nonbonded numerical potentials have been optimized by pressure-corrected iterative Boltzmann inversion. Thus, the proposed coarse-graining strategy consists of hybrid analytical and numerical contributions to the mesoscale polymer force field. © 2005 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 43: 871–885, 2005  相似文献   

4.
Ionizable amino acid side chains play important roles in membrane protein structure and function, including the activation of voltage-gated ion channels, where it has been previously suggested that charged side chains may move through the hydrocarbon core of the membrane. However, all-atom molecular dynamics simulations have demonstrated large free energy barriers for such lipid-exposed motions. These simulations have also revealed that the membrane will deform due to the presence of a charged side chain, leading to a complex solvation microenvironment for which empirical force fields were not specifically parametrized. We have tested the ability of the all-atom CHARMM, Drude polarizable CHARMM, and a recent implementation of a coarse-grained force field to measure the thermodynamics of arginine-membrane interactions as a function of protonation state. We have employed model systems to attempt to match experimental bulk partitioning and quantum mechanical interactions within the membrane and found that free energy profiles from nonpolarizable and polarizable CHARMM simulations are accurate to within 1-2 kcal/mol. In contrast, the coarse-grained simulations failed to reproduce the same membrane deformations, exhibit interactions that are an order of magnitude too small, and thus, have incorrect free energy profiles. These results illustrate the need for careful parametrization of coarse-grained force fields and demonstrate the utility of atomistic molecular dynamics for providing quantitative thermodynamic and mechanistic analysis of protein-lipid interactions.  相似文献   

5.
A key question for all coarse-graining methodologies is the degree of transferability of the resulting force field between various systems and thermodynamic conditions. Here we present a detailed study of the transferability over different thermodynamic states of a coarse-grained (CG) force field developed using the iterative Boltzmann inversion method. The force field is optimized against distribution functions obtained from atomistic simulations. We analyze the polymer case by investigating the bulk of polystyrene and polyamide-6,6 whose coarse-grained models differ in the chain length and in the number of atoms lumped in one bead. The effect of temperature and pressure on static, dynamic, and thermodynamic properties is tested by comparing systematically the coarse-grain results with the atomistic ones. We find that the CG model describing the polystyrene is transferable only in a narrow range of temperature and it fails in describing the change of the bulk density when temperature is 80 K lower than the optimization one. Moreover the calculation of the self-diffusion coefficient shows that the CG model is characterized by a faster dynamics than the atomistic one and that it overestimates the isothermal compressibility. On the contrary, the polyamide-6,6 CG model turns out to be fully transferable between different thermodynamic conditions. The transferability is checked by changing either the temperature or the pressure of the simulation. We find that, in this case, the CG model is able to follow all the intra- and interstructural rearrangements caused by the temperature changes. In addition, while at low temperature the difference between the CG and atomistic dynamics is remarkable due to the presence of hydrogen bonds in the atomistic systems, for high temperatures, the speedup of the CG dynamics is strongly reduced, leading to a CG diffusion coefficient only six times bigger than the atomistic one. Moreover, the isothermal compressibility calculated at different temperatures agrees very well with the experimental one. We find that the polymer chain length does not affect the transferability of the force field and we attribute such transferability mainly to the finer model used in describing the polyamide-6,6 than the polystyrene.  相似文献   

6.
We use simulations to predict the stability and mechanical properties of two amphiphilic bilayer membranes. We carry out atomistic MD simulations and investigate whether it is possible to use an existing coarse-grained (CG) surfactant model to map the membrane properties. We find that certain membranes can be represented well by the CG model, whereas others cannot. Atomistic MD simulations of the erucate membrane yield a headgroup area per surfactant a(0) of 0.26 nm(2), an elastic modulus K(A) of 1.7 N/m, and a bending rigidity kappa of 5 k(B)T. We find that the CG model, with the right choice for the size and potential well depth of the head, correctly reproduces a(0), kappa, as well as the fluctuation spectrum over the whole range of q values. Atomistic MD simulations of EHAC, on the other hand, suggest that this membrane is unstable. This is indicated by the fact that kappa is of the order of k(B)T, which means that the interface is extremely flexible and diffuse, and K(A) is close to zero, which means that the surface tension is zero. We argue that the CG model can be used if the headgroups are uncharged, dipolar, or effectively dipolar due to headgroup charge screening induced by counterion condensation.  相似文献   

7.
Lengthy molecular dynamics (MD) simulations were performed at constant atmospheric pressure and different temperatures for the series of the 4-n-alkyl-4'-cyanobiphenyls (nCB) with n = 6, 7, and 8. The accurate atomistic force field (Bizzarri, M.; Cacelli, I.; Prampolini, G; Tani, A. J. Phys. Chem. A 2004, 108, 10336), successfully employed to reproduce thermodynamic and transport properties of the 5CB molecule, has here been extended to higher homologues. Nematic and isotropic phases were found for all members of the series, and also, a smectic phase was (tentatively) identified for 8CB at 1 atm and 300 K. Transition temperatures reproduce the experimental values within +/-10 K. Also, structural properties as second and fourth rank orientational order parameters are in good agreement with the corresponding experimental quantities. This means that the well-known odd-even effect, observed for many properties along the nCB series, is well reproduced, despite the narrow range of oscillations, e.g., in clearing temperatures. A detailed analysis of the correlation between molecular properties and odd-even effects is presented.  相似文献   

8.
Heme proteins are found in all living organisms, and perform a wide variety of tasks ranging from electron transport, to the oxidation of organic compounds, to the sensing and transport of small molecules. In this work we review the application of classical and quantum-mechanical atomistic simulation tools to the investigation of several relevant issues in heme proteins chemistry: (i) conformational analysis, ligand migration, and solvation effects studied using classical molecular dynamics simulations; (ii) electronic structure and spin state energetics of the active sites explored using quantum-mechanics (QM) methods; (iii) the interaction of heme proteins with small ligands studied through hybrid quantum mechanics-molecular mechanics (QM-MM) techniques; (iv) and finally chemical reactivity and catalysis tackled by a combination of quantum and classical tools.  相似文献   

9.
Molecular dynamics simulations of methane hydrate have been carried out using the polarizable AMOEBA and COS/G2 force fields. Properties calculated include the temperature dependence of the lattice constant, the OC and OO radial distribution functions, and the vibrational spectra. Both the AMOEBA and COS/G2 force fields are found to successfully account for the available experimental data, with overall somewhat better agreement with experiment being found for the AMOEBA model. Comparison is made with previous results obtained using TIP4P and SPC/E effective two-body force fields and the polarizable TIP4P-FQ force field, which allows for in-plane polarization only. Significant differences are found between the properties calculated using the TIP4P-FQ model and those obtained using the other models, indicating an inadequacy of restricting explicit polarization to in-plane only.  相似文献   

10.
Typically, the most time consuming part of any atomistic molecular simulation is the repeated calculation of distances, energies, and forces between pairs of atoms. However, many molecules contain nearly rigid multi-atom groups such as rings and other conjugated moieties, whose rigidity can be exploited to significantly speed-up computations. The availability of GB-scale random-access memory (RAM) offers the possibility of tabulation (precalculation) of distance- and orientation-dependent interactions among such rigid molecular bodies. Here, we perform an investigation of this energy tabulation approach for a fluid of atomistic-but rigid-benzene molecules at standard temperature and density. In particular, using O(1) GB of RAM, we construct an energy look-up table, which encompasses the full range of allowed relative positions and orientations between a pair of whole molecules. We obtain a hardware-dependent speed-up of a factor of 24-50 as compared to an ordinary ("exact") Monte Carlo simulation and find excellent agreement between energetic and structural properties. Second, we examine the somewhat reduced fidelity of results obtained using energy tables based on much less memory use. Third, the energy table serves as a convenient platform to explore potential energy smoothing techniques, akin to coarse-graining. Simulations with smoothed tables exhibit near atomistic accuracy while increasing diffusivity. The combined speed-up in sampling from tabulation and smoothing exceeds a factor of 100. For future applications, greater speed-ups can be expected for larger rigid groups, such as those found in biomolecules.  相似文献   

11.
Solvated ions are becoming increasingly important for (bio)molecular simulations. But there are not much suitable data to validate the intermediate-range solution structure that ion-water force fields produce. We compare six selected combinations of four biomolecular Na-Cl force fields and four popular water models by means of effective ion-ion potentials. First we derive an effective potential at high dilution from simulations of two ions in explicit water. At higher ionic concentration multibody effects will become important. We propose to capture those by employing a concentration dependent dielectric permittivity. With the so obtained effective potentials we then perform implicit solvent simulations. We demonstrate that our effective potentials accurately reproduce ion-ion coordination numbers and the local structure. They allow us furthermore to calculate osmotic coefficients that can be directly compared with experimental data. We show that the osmotic coefficient is a sensitive and accurate measure for the effective ion-ion interactions and the intermediate-range structure of the solution. It is therefore a suitable and useful quantity for validating and parametrizing atomistic ion-water force fields.  相似文献   

12.
We present a new tert-butanol force field parametrized to reproduce the mixture thermodynamics of tert-butanol/water over a wide range of solution compositions at room temperature and atmospheric pressure. The experimental Kirkwood-Buff integrals, which quantify preferential solvation of solution components by the same species or by the other components, were used as target values to be reproduced. Water was modeled using the simple point charge model. In the range of alcohol mole fractions between 0.02 and 0.98, our optimized model satisfactorily reproduces alcohol-alcohol, water-water, and alcohol-water aggregation behavior. As a consequence, the solution activity derivatives are reproduced as well. A comparison has been made with solution activities obtained by free energy calculations (i.e., thermodynamic integration). It clearly shows that the Kirkwood-Buff based approach performs superior in predicting solution activities of liquid mixtures. The new tert-butanol model has been used to examine the solution structure and hydrophobic interactions in aqueous tert-butanol at the various mixture compositions. A comparison is made with structural data obtained by neutron diffraction.  相似文献   

13.
We have developed a coarse-grained force field for the poly(styrene-b-butadiene) diblock copolymer. We describe the computational methods and discuss how they were applied to develop a coarse-grained force field for this diblock copolymer from the atomistic simulation. The new force field contains three different bonds, four angles, five dihedral angles, and three nonbonded terms. We successfully tested this coarse-grained model against the chain properties, including static and dynamic properties, derived from the atomistic simulation; the results suggest that the coarse-grained force field is an effective model.  相似文献   

14.
Phospholipid force fields are of ample importance for the simulation of artificial bilayers, membranes, and also for the simulation of integral membrane proteins. Here, we compare the two most applied atomic force fields for phospholipids, the all-atom CHARMM27 and the united atom Berger force field, with a newly developed all-atom generalized AMBER force field (GAFF) for dioleoylphosphatidylcholine molecules. Only the latter displays the experimentally observed difference in the order of the C2 atom between the two acyl chains. The interfacial water dynamics is smoothly increased between the lipid carbonyl region and the bulk water phase for all force fields; however, the water order and with it the electrostatic potential across the bilayer showed distinct differences between the force fields. Both Berger and GAFF underestimate the lipid self-diffusion. GAFF offers a consistent force field for the atomic scale simulation of biomembranes.  相似文献   

15.
We have used molecular dynamic simulations to study the structural and dynamical properties of liquid dimethyl ether (DME) with a newly constructed ab initio force field in this article. The ab initio potential energy data were calculated at the second order Møller‐Plesset (MP2) perturbation theory with Dunning's correlation consistent basis sets (up to aug‐cc‐pVQZ). We considered 17 configurations of the DME dime for the orientation sampling. The calculated MP2 potential data were used to construct a 3‐site united atom force field model. The simulation results are compared with those using the empirical force field of Jorgensen and Ibrahim (Jorgensen and Ibrahim, J Am Chem Soc 1981, 103, 3976) and with available experimental measurements. We obtain quantitative agreements for the atom‐wise radial distribution functions, the self‐diffusion coefficients, and the shear viscosities over a wide range of experimental conditions. This force field thus provides a suitable starting point to predict liquid properties of DME from first principles intermolecular interactions with no empirical data input a priori. © 2012 Wiley Periodicals, Inc.  相似文献   

16.
The recently developed multiscale coarse-graining (MS-CG) method (Izvekov, S.; Voth, G. A. J. Phys. Chem. B 2005, 109, 2469; J. Chem. Phys. 2005, 123, 134105) is used to build a mixed all-atom and coarse-grained (AA-CG) model of the gramicidin A (gA) ion channel embedded in a dimyristoylphosphatidylcholine (DMPC) lipid bilayer and water environment. In this model, the gA peptide was described in full atomistic detail, while the lipid and water molecules were described using coarse-grained representations. The atom-CG and CG-CG interactions in the mixed AA-CG model were determined using the MS-CG method. Molecular dynamics (MD) simulations were performed using the resulting AA-CG model. The results from simulations of the AA-CG model compare very favorably to those from all-atom MD simulations of the entire system. Since the MS-CG method employs a general and systematic approach to obtain effective interactions from the underlying all-atom models, the present approach to rigorously develop mixed AA-CG models has the potential to be extended to many other systems.  相似文献   

17.
18.
Several molecular dynamics simulations were performed on three proteins--bovine apo-calbindin D9K, human interleukin-4 R88Q mutant, and domain IIA of bacillus subtilis glucose permease--with each of the AMBER94, CHARMM22, and OPLS-AA force fields as implemented in CHARMM. Structural and dynamic properties such as solvent-accessible surface area, radius of gyration, deviation from their respective experimental structures, secondary structure, and backbone order parameters are obtained from each of the 2-ns simulations for the purpose of comparing the protein portions of these force fields. For one of the proteins, the interleukin-4 mutant, two independent simulations were performed using the CHARMM22 force field to gauge the sensitivity of some of these properties to the specific trajectory. In general, the force fields tested performed remarkably similarly with differences on the order of those found for the two independent trajectories of interleukin-4 with CHARMM22. When all three proteins are considered together, no force field showed any consistent trend in variations for most of the properties monitored in the study.  相似文献   

19.
Summary A methodology aimed at improving the accuracy of current docking–scoring procedures is proposed, and validated through detailed tests of its performance in predicting the activity of HIV-1 protease inhibitors. This methodology is based on molecular dynamics simulations using a force field whose effective charges are refined by means of a novel procedure that relies on quantum-mechanical calculations and preserves the internal consistency of the parameterization scheme.  相似文献   

20.
We introduce an initial implementation of the LICHEM software package. LICHEM can interface with Gaussian, PSI4, NWChem, TINKER, and TINKER–HP to enable QM/MM calculations using multipolar/polarizable force fields. LICHEM extracts forces and energies from unmodified QM and MM software packages to perform geometry optimizations, single‐point energy calculations, or Monte Carlo simulations. When the QM and MM regions are connected by covalent bonds, the pseudo‐bond approach is employed to smoothly transition between the QM region and the polarizable force field. A series of water clusters and small peptides have been employed to test our initial implementation. The results obtained from these test systems show the capabilities of the new software and highlight the importance of including explicit polarization. © 2016 Wiley Periodicals, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号