首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Mixed cationic and anionic surfactants were adsorbed on cadmium sulfide quantum dots (CdS QDs) capped with mercaptoacetic acid. The CdS QDs can be extracted into acetonitrile with 98 % efficiency in a single step. Phase separation only occurs at a molar ratio of 1:1.5 between cationic and anionic surfactants. The surfactant-adsorbed QDs in acetonitrile solution display stronger and more stable photoluminescence than in water solution. The method was applied for determination of silver(I) ion based on its luminescence enhancement of the QDs. Under the optimum conditions, the relative fluorescence intensity is linearly proportional to the concentration of silver(I) ion in the range between 50 pmol L?1and 4 μmol L?1, with a 20 pmol L?1 detection limit. The relative standard deviation was 1.93 % for 9 replicate measurements of a 0.2 μmol L?1 solution of Ag(I).
Figure
?  相似文献   

2.
The fragmentation reactions of the MH+ ions of Leu-enkephalin amide and a variety of heptapeptide amides have been studied in detail as a function of collision energy using a QqToF beam type mass spectrometer. The initial fragmentation of the protonated amides involves primarily formation of bn ions, including significant loss of NH3 from the MH+ ions. Further fragmentation of these bn ions occurs following macrocyclization/ring opening leading in many cases to bn ions with permuted sequences and, thus, to formation of non-direct sequence ions. The importance of these non-direct sequence ions increases markedly with increasing collision energy, making peptide sequence determination difficult, if not impossible, at higher collision energies.
Figure
?  相似文献   

3.
The adsorption and aggregation behavior of novel star-shaped gluconamide-type cationic surfactants N-dodecyl-N,N-bis[(3-D-gluconylamido)propyl]-N-alkylammonium bromide (CnDBGB, where n represents hydrocarbon chain lengths of 10, 12, and 14) has been studied on the basis of static/dynamic surface tension, conductivity, dynamic light scattering (DLS), and transmission electron microscopy (TEM) data. The static surface tension of the CnDBGB aqueous solution measured at the critical micelle concentration (CMC) is observed to be significantly lower than that of the corresponding monomeric surfactants. The dynamic surface tension results indicate that adsorption process of above CMC is a mixed diffusion–kinetic adsorption mechanism. From the results of temperature dependent conductivity measurements, we could obtain the degree of counterion binding (β) and the thermodynamic parameters such as standard free energy (ΔG mic 0 ), enthalpy (ΔH mic 0 ), and entropy (ΔS mic 0 ) of aggregation. With a combination of the DLS and TEM data, a size transformation of the micelles is suggested to occur with an increase in the concentration.  相似文献   

4.
We describe a method for the determination of inorganic selenium in water samples via gas-phase chemiluminescence (GPCL). Se(IV) was first derivatized with 4-nitro-o-phenylenediamine to form 5-nitropiazselenol. The latter was decomposed by persulfate through photocatalytic oxidation to give Se(VI), which was reduced to Se(IV). Selenium hydride was generated from Se(IV) through reduction with sodium borohydride and then preconcentrated using cryotrapping. The cryotrapped hydride was evaporated and carried to a reaction chamber by a stream of helium, where it produced GPCL as a result of ozonation. The method exhibits a wide linear calibration range (from 0.5?μg?L?1 to 1.0?mg?L?1) with a detection limit of 0.12?μg?L?1 (for n?=?11), and a relative standard deviation of 3.90?% (at n?=?11) at 5.0?μg?L?1 level of selenium. The method was applied to the determination of inorganic selenium in water samples and gave satisfactory results.
Figure
A GPCL detection system is developed for the determination of inorganic selenium in water samples. By using analytical technique in this figure, such as derivatization, UV/ S2O 8 2- decomposition, stopped-flow injection and cryotrapping, the system can separate and preconcentrate the analyte from the matrix, then produce GPCL as a result of ozonation. The method was simple, sensitive with low-cost instrumentation.  相似文献   

5.
We report on a combination of magnetic solid-phase extraction and spectrophotometric determination of bromate. Cetyltrimethylammonium ion was adsorbed on the surface of phenyl-functionalized silica-coated Fe3O4 nanoparticles (Ph-SiO2@Fe3O4), and these materials served as the sorbent. The effects of surfactant and amount of sorbent, the composition of the desorption solution, the extraction time and temperature were optimized. Under optimized conditions, an enrichment factor of 12 was achieved, and the relative standard deviation is 2.9 % (for n?=?5). The calibration plot covers the 1–50 ng mL?1 range with reasonable linearity (r 2?>?0.998); and the limit of detection is 0.5 ng mL?1. The method is not interfered by ionic compounds commonly found in environmental water samples. It was successfully applied to the determination of bromate in spiked water samples.
Figure
Extraction of bromate ions using surfactant-coated phenyl functionalized Fe3O4 magnetic nanoparticles followed by spectrophotometric detection.  相似文献   

6.
A novel fingerprinting method, bioactivity fingerprint analysis, based on an ultrafiltration–ultraperformance liquid chromatography–multistage tandem mass spectrometry (UPLC–MS n ) method is proposed for the quality control of herbal medicines from the bioactivity viewpoint concerning the efficacy of herbal medicines. The bioactivity fingerprints reflecting the anti-inflammatory activities of radix Aconiti and radix Aconiti preparata were established. With use of ultrafiltration UPLC–MS n , 11 cyclooxygenase-2 ligands from radix Aconiti preparata and 14 cyclooxygenase-2 ligands from radix Aconiti were found after incubation with cyclooxygenase-2. Twelve of the cyclooxygenase-2 ligands were identified by the ultraperformance UPLC–MS n method. The enrichment factor of each peak in the bioactivity fingerprint was calculated and was demonstrated to be characteristic, which makes bioactivity fingerprint analysis for the quality control of herbal medicines possible from the viewpoint of their bioactivities.
Figure
Bioactivity fingerprint analysis is defined as the chromatograms and spectra of the complex system of effective constituents containing information on their pharmacodynamic activities  相似文献   

7.
We report on a simple, sensitive and reliable method for the cloud point extraction of antimony (Sb) and its subsequent spectrophotometric detection. It is based on the color reaction of Sb (III) with iodide in acidic medium and subsequent micelle-mediated extraction of tetraiodoantimonate using a non-ionic surfactant in the absence of any chelating agent. The effects of reaction and extraction parameters were optimized. The calibration plot is linear in the range of 0.80–95?ng?mL?1 of antimony in the sample solution, with a regression coefficient (r) of 0.9994 (for n?=?9). The detection limit (at SNR?=?3) is 0.23?ng?mL?1, and the relative standard deviations at 10 and 70?ng?mL?1 of antimony are 3.32 and 1.85?% (at n?=?8), respectively. The method compared favorably to other methods and was applied to determine antimony in seawater, anti-leishmania drug (glucantime), and human serum.
Figure
This method is based on the extraction of yellow iodoantimonous acid (HSbI4) into surfactant-rich phase of Triton X-114 when trivalent antimony in sulfuric acid solution is treated with an excess of potassium iodide solution.  相似文献   

8.
A new hydrophilic and nonionic poly(2-vinyloxazoline)-grafted silica (Sil-VOX n ) phase was synthesized and applied for the separation of nucleosides and nucleobases in hydrophilic interaction chromatography (HILIC). Polymerization and immobilization onto silica were confirmed by using characterization techniques including 1H NMR spectroscopy, elemental analysis, and diffuse reflectance infrared Fourier transform spectroscopy. The hydrophilicity or wettability of Sil-VOX n was observed by measuring the contact angle (59.9°). The chromatographic results were compared with those obtained with a conventional HILIC silica column. The Sil-VOX n phase showed much better separation of polar test analytes than the silica column, and the elution order was different. Differences in selectivity between these two columns indicate that the stationary phase cannot function merely as an inert support for a water layer into which the solutes are partitioned from the bulk mobile phase. To elucidate the interaction mechanism, the separation of dihydroxybenzene isomers was performed on both columns in normal-phase liquid chromatography. Sil-VOX n was very sensitive to the dipole moments of the positional isomers of polycyclic aromatic compounds in normal-phase liquid chromatography. The interaction mechanism for Sil-VOX n in HILIC separation is also described.
Figure
Separation of nucleosides and nucleobases with Sil-VOXn (bottom) and a commercial silica column (top). Mobile phase of acetonitrile and 20 mM ammonium acetate (9:1, v/v). Flow rate 1 ml min-1, column temperature 25 °C. The analytes were as follows 5-iodouracil (1), thymine (2), uracil (3), 4,6-diaminopyrimidine (4), uridine (5), adenosine 2 (6), cytosine (7), cytidine (8), and guanosine (9)  相似文献   

9.
Positive and negative ion electrospray mass spectra obtained from 50 mM phosphoric acid solutions presented a large number of phosphoric acid clusters: [(H3PO4)n?+?zH] z+ or [(H3PO4)n – zH] z– , with n up to 200 and z up to 4 for positively charged clusters, and n up to 270 and z up to 7 for negatively charged cluster ions. Ion mobility experiments allowed very explicit separation of the different charge states. Because of the increased pressures involved in ion mobility experiments, dissociation to smaller clusters was observed both in the trap and transfer areas. Voltages along the ion path could be optimized so as to minimize this effect, which can be directly associated with the cleavage of hydrogen bonds. Having excluded the ion mobility times that resulted from dissociated ions, each cluster ion appeared at a single drift time. These drift times showed a linear progression with the number of phosphoric atoms for cluster ions of the same charge state. Cross section calculations were carried out with MOBCAL on DFT optimized geometries with different hydrogen locations and with three types of atomic charges. DFT geometry optimizations yielded roughly spherical structures. Our results for nitrogen gas interaction cross sections showed that values were dependent on the atomic charges definition used in the MOBCAL calculation. This pinpointed the necessity to define a clear theoretical framework before any comparative interpretations can be attempted with uncharacterized compounds.
Figure
?  相似文献   

10.
We present a study on the application of magnetic nanoparticles (MNPs) prepared from Fe3O4 and functionalized with pyridine as an adsorbent for the solid-phase extraction of trace quantities of Pd(II) ion. The pyridine group was immobilized on the surface of the MNPs by covalent bonding of isonicotinamide. The modified MNPs can be readily separated from an aqueous solution by applying an external magnetic field. Effects of pH, the amount of functionalized MNPs, extraction time, type and quantity of eluent, desorption time, break-through volume and interfering ions on the extraction efficiency were optimized. The amount of Pd(II) was then determined using FAAS. Under the optimized conditions, the detection limit and preconcentration factor are 0.15?μg?L-1 and 196, respectively, and the relative standard deviation (at 20?μgL?1; for n?=?10) is 3.7?%. The method had a linear analytical range from 1 to 80?μg?L-1 and was applied to determine Pd(II) in spiked tape water and soil.
Figure
?  相似文献   

11.
The transformations of platinum and a heteropoly acid (HPA) in binary systems prepared from H2PtCl6 or H2PtCl4 and H3PMo12O40 were studied using IR and UV-VIS spectroscopy, elemental analysis, XPS, EXAFS, TPR, and HREM. The calcination of platinum chloride with the HPA to 450°C resulted in the formation of a platinum salt of the HPA along with decomposition products (mixture I). The reduction of calcined samples containing Pt: HPA = 1: 1 with hydrogen at 300°C (mixture II) followed by exposure to air resulted in the regeneration of the HPA structure. The resulting solid samples of Pt 1?n 0 Pt n II ClmOxHy) (H3+p PMo 12?p VI Mo p V O40) (III) contained platinum and molybdenum in both oxidized and reduced states. The following association species were isolated from mixtures I and II by dissolving in water: [Pt n II PMo12O40] (I s) (n = 0.3?0.8) and [Pt n 0 PMo 12 red O40] (II s) (n ≈ 1). Under exposure to air, the solutions of I s were stable (pH ~2), whereas Ptmet was released from II s. After the drying of I s, the solid association species (Pt n II ClmOxHy). (H3PMo12O40), where n = 0.3?0.8, m = 0.2?1, and x = 3?0, (I solid) were obtained. The I solid/SiO2 supported samples were prepared by impregnating SiO2 with a solution of I s and drying at 100°C. Platinum metal particles of size ~20 Å and a mixed-valence association species of platinum with the HPA were observed after the reduction of I solid/SiO2 with hydrogen at 100–250°C. These samples were active in the gas-phase oxidation of benzene to phenol at 180°C with the use of an O2-H2-N2 mixture.  相似文献   

12.
We describe a nanometer sized composite material made from titanium dioxide and silica that was chemically modified with 4-aminophenylarsonic acid and used for selective solid-phase extraction, separation and preconcentration of of aluminum(III) prior to its determination by ICP-OES. Under optimized conditions, the static adsorption capacity is 56.58?mg?g?1, the enrichment factor is 150, the relative standard deviation is 1.6% (for n?=?11), and the detection limit (3?s) is 60?pg?mL?1. The method was validated by analyzing the reference materials GBW 09101 (hair) and GBW 10024 (scallop) and successfully applied to the determination of trace Al(III) in spiked water samples and human urine, with recoveries ranging from 96% to 101%.
Figure
4-aminophenylarsonic acid modified nanometer TiO2/SiO2 composite material has been developed to separate and concentrate trace Al(III) from aqueous samples. Parameters that affect the sorption and elution efficiency were studied in column mode, and the new adsorbent presents high selectivity and adsorption capacity for the solid phase extraction of trace Al(III).  相似文献   

13.
We have immobilized iminodiacetic acid on mesoporous Fe3O4@SiO2 microspheres and used this material for efficient and cost effective method of magnetic solid phase extraction (SPE) of trace levels of Cd, Mn and Pb. The microspheres were characterized by infrared spectroscopy, scanning electron microscopy and transmission electron microscopy. The loaded microspheres can be easily separated from the aqueous sample solution by applying an external magnetic field. The effects of pH, sample volume, concentration and volume of eluent, and of interfering ions were investigated in detail. The method has detection limit of 0.16, 0.26 and 0.26?ng?L?1 for the ions of Cd, Mn and Pb, respectively, and the relative standard deviations (RSDs, c?=?1???g?L?1, n?=?7) are 4.8%, 4.6% and 7.4%. The method was successfully applied to the determination of these metals in biological and environmental samples using ICP-MS. Two certified reference materials were analyzed, and the results coincided well with the certified values.
Figure
Mesoporous Fe3O4@SiO2@IDA magnetic particles for fast and selective magnetic solid phase extraction of trace Cd, Mn and Pb from environmental and biological samples followed by inductively coupled plasma mass spectrometry detection.  相似文献   

14.
Obtaining unambiguous linkage information between sugars in oligosaccharides is an important step in their detailed structural analysis. An approach is described that provides greater confidence in linkage determination for linear oligosaccharides based on multiple-stage tandem mass spectrometry (MSn, n >2) and collision-induced dissociation (CID) of Z1 ions in the negative ion mode. Under low energy CID conditions, disaccharides 18O-labeled on the reducing carbonyl group gave rise to Z1 product ions (m/z 163) derived from the reducing sugar, which could be mass-discriminated from other possible structural isomers having m/z 161. MS3 CID of these m/z 163 ions showed distinct fragmentation fingerprints corresponding to the linkage types and largely unaffected by sugar unit identities or their anomeric configurations. This unique property allowed standard CID spectra of Z1 ions to be generated from a small set of disaccharide samples that were representative of many other possible isomeric structures. With the use of MSn CID (n = 3 – 5), model linear oligosaccharides were dissociated into overlapping disaccharide structures, which were subsequently fragmented to form their corresponding Z1 ions. CID data of these Z1 ions were collected and compared with the standard database of Z1 ion CID using spectra similarity scores for linkage determination. As the proof-of-principle tests demonstrated, we achieved correct determination of individual linkage types along with their locations within two trisaccharides and a pentasaccharide.
Figure
?  相似文献   

15.
Graphene-based magnetic nanoparticles (G-Fe3O4) were prepared and used as an effective adsorbent for the solid-phase extraction of trace quantities of cadmium from water and vegetable samples. The method avoids some of the time-consuming steps associated with traditional solid phase extraction. The excellent sorption property of the G-Fe3O4 system is attributed to π - π stacking interaction and hydrophobic interactions between graphene and the Cd-PAN complex. The effects of pH, the amount of G–Fe3O4, extraction time, type and volume of eluent, desorption time and interfering ions on the extraction efficiency were optimized. The preconcentration factor is 200. Cd(II) was then quantified by flame atomic absorption spectrometry with a detection limit of 0.32 ng mL?1. The relative standard deviation (at 50 ng mL?1; for n?=?10) is 2.45 %. The method has a linear analytical range from 1.1 to 150 ng mL?1, and the recoveries in case of real samples are in the range between 93.1 % and 102.3 %.
Figure
General procedure for magnetic preconcentration of cadmium ions from aqueous solution using graphene-based magnetic nanoparticles  相似文献   

16.
This contribution introduces a fluorescence assay for real-time determination of the activity of p97/VCP, a 540-kDa homo-hexameric enzyme, belonging to the AAA-ATPase family. A fluorescent reporter “poly 1-(3-((4-methylthiophen-3-yl)oxy)propyl)quinuclidin-1-ium” (poly PTQ) is used to monitor the hydrolysis of ATP to ADP by p97/VCP. The proposed assay relies on the different strength of coordination of ATP and ADP to the polymer backbone. We used recovery of fluorescence intensity on addition of p97/VCP to a poly PTQ/ATP solution to determine the enzymatic activity. The kinetic data K m and V max were 0.30?mmol?L?1 ATP and 0.134?nmol ATP min?1?μg?1 enzyme, respectively. The specificity of the assay was investigated by using an unhydrolyzable ATP analogue and sensitivity against p97 mutagenesis was further examined by detection of the activity of wild type and truncated p97/VCP. Our study demonstrates that determination of the real-time activity of p97/VCP is possible, because of the superior sensitivity and very fast optical response of poly PTQ.
Figure
Illustration of fluorescence based detection mechanism for real-time determination of the activity of ATPase by water-soluble polythiophene  相似文献   

17.
We describe a simple and rapid method for the ultrasound-assisted microextraction of antimony using the solidified floating organic drop method. The effects of pH, type and volume of the extractant, time of sonication, amount of chelating agent, type and amount of surfactant were investigated and optimized. Bromopyrogollol red is acting as the chelating agent. Antimony(III) ion was extracted into finely dispersed droplets of undecanol after ion-pair formation with the water soluble chelator and the cationic detergent benzyldimethyltetradecylammonium chloride. Flame atomic absorption spectrometry was used for the detection. The resulting calibration is linear in the concentration range from 4.0 to 900?ng?mL-1 of Sb(III) with a correlation coefficient of 0.9981. The enrichment factor is 67, the detection limit is 0.62?ng?mL-1, and the relative standard deviation is?±?3.6% (at 100?ng?mL-1; for n?=?10). The method was successfully applied to the determination of antimony in water samples.
Figure
Antimony and many of its compounds are toxic and can damage the kidneys and the liver, causing death in a few days. Concentration of this element is very low in nature and hence their determination required sensitive analytical techniques. One such technique is an ultrasound assisted emulsification microextraction procedure.  相似文献   

18.
We show that the addition of white dextrin during the electrochemical deposition of platinum nanostructures (nano-Pt) on a glassy carbon electrode (GCE) results in an electrochemically active surface that is much larger than that of platinum microparticles prepared by the same procedure but in the absence of dextrin. The nano-Pt deposits are characterized by scanning electron microscopy (SEM), energy dispersive spectroscopy, and electrochemical methods. The SEM images reveal deposits composed of mainly nanoparticles and short nanorods. The GCE was applied as a novel and cost-effective catalyst for methanol oxidation. The use of nano-Pt improves the electrocatalytic activity and the stability of the electrodes.
Figure
(A) SEM image of the Pt nanostructures. (B) Electrochemical responses of the Pt nanostructures (solid line) and Pt microparticles (line) in 1.4 M CH3OH + 0.5 M H2SO4 solution at υ?=?50 mV s?1. Novel Pt nanostructures were electrodeposited at the surface of glassy carbon electrode in the presence of white dextrin as an additive, which exhibit high electrocatalytic activity towards methanol oxidation due to their highly electrochemically active surface area.  相似文献   

19.
We describe a linear ion-trap (LIT) multiple-stage (MSn) mass spectrometric approach towards differentiation of alkylacyl, alk-1-enylacyl- and diacyl-glycerophoscholines (PCs) as the [M – 15] ions desorbed by electrospray ionization (ESI) in the negative-ion mode. The MS4 mass spectra of the [M – 15 – R2′CH = CO] ions originated from the three PC subfamilies are readily distinguishable, resulting in unambiguous distinction of the lipid classes. This method is applied to two alkyl ether rich PC mixtures isolated from murine bone marrow neutrophils and kidney, respectively, to explore its utility in the characterization of complex PC mixture of biological origin, resulting in the realization of the detailed structures of the PC species, including various classes and many minor isobaric isomers.
Graphical abstract
?  相似文献   

20.
Large polarizable n-alkanes (approximately C18 and larger), alcohols, and other nonpolar compounds can be detected as negative ions when sample solutions are injected directly into the sampling orifice of the atmospheric pressure interface of the time-of-flight mass spectrometer with the direct analysis in real time (DART) ion source operating in negative-ion mode. The mass spectra are dominated by peaks corresponding to [M + O2] ̄?. No fragmentation is observed, making this a very soft ionization technique for samples that are otherwise difficult to analyze by DART. Detection limits for cholesterol were determined to be in the low nanogram range.
Figure
?  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号