首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Poly(lactic acid) (PLA)/poly(butylene adipate-co-terephthalate) (PBAT) blends were prepared using melt processing. The effects of maleic anhydride grafted PLA (PLA-g-MA) and calcium carbonate (CaCO3) content on mechanical, thermal, and morphological properties of the blends were investigated. PLA-g-MA was synthesized by varying monomer and initiator contents using a reactive melt-grafting process. Tensile properties of PLA/PBAT blend were enhanced with adding 2 phr of PLA-g-MA. SEM micrographs exhibited the improvement of interfacial adhesion between PLA and PBAT in the compatibilized blend. Moreover, thermal stability of the blends improved with presence of PLA-g-MA. With increasing CaCO3 content, Young’s modulus of the composites increased.  相似文献   

2.
A response surface methodology (RSM) design was used to analyze the effects of maleic anhydride (MA) and 2,5-bis(tert-butylperoxy)-2,5-dimethyl hexane (Luperox or L101) content, and TSE screw speed on the degree of grafted MA (MAg) and number average molecular weight (Mn) of maleated PLA (PLA-g-MA), which can be used as a reactive compatibilizer in production of PLA blends with various components. PLA-g-MA's FTIR peaks indicated that MA was grafted onto the PLA backbone and oligomeric MA was also present. A maximum of 0.52 wt% MAg determined by titration was achieved at the expense of a 50% reduction of Mn and an increase in the polydispersity index to around 2.0. Generally, increasing L101 increased the degree of grafting and decreased Mn. L101 and MAg had a large effect on the stability of PLA-g-MA's Mn during storage. Nominally, amounts of MA equal to 4.5 wt%, L101 between 0.45 and 0.65 wt%, and screw speed of 20 rpm provided the optimal conditions for grafting MA onto PLA.  相似文献   

3.
In this study, maleic-anhydride-grafted polylactide (PLA-g-MA) was investigated as a potential compatibilizing agent for the polylactide (PLA)/poly(ε-caprolactone) (PCL) system, with the aim of enhancing the final properties of the two polymer blends. Indeed, PLA-g-MA was prepared via reactive blending through a free radical process and characterized by means of 1H-NMR and titration measurements, which demonstrated that the employed procedure allows grafting 0.7 wt% of MA onto the polymer backbone, while avoiding a dramatic reduction of PLA molecular mass. The specific effect of the MA-grafted PLA on the features of the PLA/PCL system was highlighted by adding different amounts of PLA-g-MA to 70:30 (w/w) PLA/PCL blends, where the 70 % PLA component was progressively substituted by its maleated modification. The efficiency of PLA-g-MA as a compatibilizer for the PLA/PCL blends was assessed through SEM analysis, which showed that the dimensions of PCL domains decrease and their adhesion to PLA improves by increasing the amount of PLA-g-MA in the blends. The peculiar microstructure promoted by the presence of PLA-g-MA was found to enhance the mechanical properties of the blend, improving the elongation at break without decreasing its Young’s modulus. Our study demonstrated that not only the microstructure but also the thermal properties of the blends were significantly affected by the replacement of PLA with PLA-g-MA.  相似文献   

4.
On novel bio-hybrid system based on PLA and POSS   总被引:1,自引:0,他引:1  
In this work, a novel strategy for the preparation of bio-hybrid systems based on polylactic acid (PLA) and polyhedral oligomeric silsesquioxane (POSS) was developed. Indeed, the new method consists in a preliminary functionalization of the polymer matrix and a subsequent reaction of silsesquioxane molecules, characterized by amino or hydroxyl functionalities, potentially capable of reacting with maleic anhydride groups created onto PLA by a free radical process. The method adopted to create maleic anhydride-grafted polylactic acid (PLA-g-MA) allowed to graft 0.7 wt% of MA onto the polymer backbone, avoiding a dramatic reduction of PLA molecular mass. 1H-NMR measurements demonstrated a different reactivity of the two used POSS, namely trans-cyclohexanediolisobutyl POSS (POSS-OH) and aminopropyl heptaisobutyl POSS (POSS-NH2). Indeed, the amino group of POSS-NH2 was found to react with the maleic anhydride group of PLA-g-MA allowing to obtain a hybrid system, carrying silsesquioxane molecules along the polymer backbone while the reactivity of POSS-OH turned out to be much lower. Thermal properties of the synthesized hybrid systems were assessed by means of DSC measurements. Indeed, the presence of POSS grafted onto the macromolecular chain was found to improve PLA crystallinity, by affecting the crystal nucleation density. Moreover, a decrease of surface water wettability was observed in the films made of PLA-g-MA/POSS-NH2.  相似文献   

5.
Poly(lactic acid), PLA, was chemically modified with maleic anhydride (MA) by reactive extrusion. The effect of this modification on molar mass (MM) and acidity was assessed by means of size-exclusion chromatography (SEC) and titration, respectively. PLA MM decreased in the presence of MA solely and of MA and peroxide. Reduction in MM was monitored by the increase in acidity. PLA blends containing poly(butylene adipate-co-terephthalate) (PBAT) were prepared through different mixing protocols, PLA/PBAT, PLA-g-MA/PBAT and PLA/PBAT/MA/peroxide (PLA/PBAT in situ). SEC results and rheological properties revealed reduction in MM and viscosity of the modified blends. PLA/PBAT presented increase in MM and bimodal MM distribution. The calculated interfacial tension was significantly lower for the modified blends, despite the lower average particle area of PLA/PBAT. Surprisingly, the modified blends presented higher yield strength than that predicted by the rule of mixtures, which might indicate interfacial reactions.  相似文献   

6.
Polylactide (PLA) films blended with 10 wt% poly(butylene adipate-co-terephthalate) (PBAT) were prepared by using a twin screw extruder in the presence of the nucleating agent of titanium dioxide (TiO2) and the compatibilizers of toluene diisocyanate (TDI) and PLA-grafted-maleic anhydride (PLA-g-MA). The synergistic effect of the nucleation and compatibilization on the properties and crystallization behavior of the PLA/PBAT (PLB) films was explored. The results showed that the addition of TiO2 significantly enhanced the tensile strength and the impact tensile resistance of the PLB films while slightly decreased its thermal stability. In addition, the compatibilizers of TDI and PLA-g-MA in the system not only affected the crystallinity and cold crystallization process of the PLB films, but also increased the mechanical properties of them due to the improvement of the interfacial interaction between PLA and PBAT revealed by the morphological measurement. The synergistic effects of the nucleating agent and the compatibilizer afforded the blend films with increased tensile strength and impact tensile toughness, improved cold crystallization property and χ c.  相似文献   

7.
Polylactic acid (PLA) was toughened by 5–20 wt % of natural rubber (NR). Two different compatibilizers maleated PLA (PLA-g-MA) and maleated NR (NR-g-MA) were used as coupling agent. The blends were prepared using twin screw extruder at varying levels of NR. Mechanical, thermal and morphological analyses were carried out to study the effect of compatibilizer on PLA/NR blends compatibility.  相似文献   

8.
Blends of poly(2,6-dimethyl-1,4-phenylene oxide)/nylon 6 alloys based on ethylene-propylene-diene elastomer (EPDM) grafted with maleic anhydride (MA) (EPDM-g-MA), EPDM grafted with glycidyl methacrylate (EPDM-g-GMA), and styrene-ethylene-butadiene-styrene block copolymer grafted with MA (SEBS-g-MA) were prepared via melt extruction, and morphology, mechanical properties, and rheology were studied. The compatibilizing effects of functionalized elastomers on the PPO/nylon 6 alloys were proved by DSC analysis and confirmed by the significant improvement in the notched Izod impact strength. Toughening was resulted from the smaller particle size and finer dispersion of EPDM in the PPO/nylon 6 matrix as well as a novel network structure of SEBS-g-MA domain in matrix. The notched Izod impact strength of the blends exhibited an optimum value when the extent of MA or GMA graft ratio of EPDM varied, which was an order of magnitude higher than the non-toughened alloys. The morphology revealed that the size of EPDM particles decreased with an increase in graft ratio of MA or GMA onto EPDM. Rheology investigation indicated that the MA or GMA moieties on EPDM reacted with the amine groups of nylon 6, which increased the molecular weight and the degree of branching, and thus resulted in an increase in the viscosity of the blends. This proved the reactive compatibilization between functionalized EPDM and PPO/nylon 6 matrix.  相似文献   

9.
Poly(lactic acid)‐grafted multiwalled carbon nanotubes (MWNT‐g‐PLA) were prepared by the direct melt‐polycondensation of L ‐lactic acid with carboxylic acid‐functionalized MWNT (MWNT‐COOH) and then mixed with a commercially available neat PLA to prepare PLA/MWNT‐g‐PLA nanocomposites. Morphological, thermal, mechanical, and electrical characteristics of PLA/MWNT‐g‐PLA nanocomposites were investigated as a function of the MWNT content and compared with those of the neat PLA, PLA/MWNT, and PLA/MWNT‐COOH nanocomposites. It was identified from FE‐SEM images that PLA/MWNT‐g‐PLA nanocomposites exhibit good dispersion of MWNT‐g‐PLA in the PLA matrix, while PLA/MWNT and PLA/MWNT‐COOH nanocomposites display MWNT aggregates. As a result, initial moduli and tensile strengths of PLA/MWNT‐g‐PLA composites are much higher than those of neat PLA, PLA/MWNT, and PLA/MWNT‐COOH, which stems from the efficient reinforcing effect of MWNT‐g‐PLA in the PLA matrix. In addition, the crystallization rate of PLA/MWNT‐g‐PLA nanocomposites is faster than those of neat PLA, PLA/MWNT, and PLA/MWNT‐COOH, since MWNT‐g‐PLA dispersed in the PLA matrix serves efficiently as a nucleating agent. It is interesting that, unlike PLA/MWNT nanocomposites, surface resistivities of PLA/MWNT‐g‐PLA nanocomposites did not change noticeably depending on the MWNT content, demonstrating that MWNTs in PLA/MWNT‐g‐PLA are wrapped with the PLA chains of MWNT‐g‐PLA. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

10.
Chitosan-graft-poly(lactic acid)(CS-g-PLA) copolymer was synthesized through emulsion self-assembly in a water-in-oil(W/O) microemulsion. The water phase was composed of CS aqueous solution, while the oil phase was made up of PLA in chloroform. The W/O microemulsion was fabricated in the presence of surfactant span-80 and the self-assembly was performed between PLA and CS under the effect of N-(3-dimethylaminopropyl)-N′-ethylcarbodiimide hydrochloride(EDC·HCl). FTIR and1H-NMR analysis indicated PLA was grafted onto the backbone of CS via the reaction between the carboxyl groups in PLA and the amino groups in CS.1H-NMR characterization further revealed the grafting content of PLA was 16%. The obtained CS-g-PLA could self-assemble to form micelles, their size distributed in the range of 125 375 nm with average diameter of 142 nm. The present design integrates the favorable biological properties of CS and the excellent mechanical properties of PLA, which makes CS-g-PLA copolymer a promising candidate as a carrier for targeted bioactive molecules delivery.  相似文献   

11.
Voltammetric response of FeS nanoparticles (NPs) dispersion based on the oxidation exchange voltammetric peak between Hg electrode and FeS NPs at around ?0.45 V was studied in different electrolytes (chloride, acetate, perchlorate). Several experiments were designed to monitor in parallel to voltammetric measurements, physicochemical and surface characteristics of the formed FeS NPs (ζ-potential and size) under same experimental conditions. It was shown that recorded voltammetric peak produced by FeS NPs from bulk solution is changing with electrolyte concentration and composition, as well as observed size and ζ-potential of the studied FeS NPs. Our measurements indicate relationship between measured ζ-potential of FeS NPs dispersions and recorded voltametric peak charge and potential, pointing to a promising potential of voltammetry in characterization of physicochemical and surface chemistry features of metal sulphide NPs in water environment. The best voltammetric response is obtained in presence of small NPs, <100 nm.  相似文献   

12.
The objective of this article is to fabricate poly(lactic acid) (PLA) and nano silica (SiO2) composites and investigate effect of SiO2 on the properties of PLA composites. Surface‐grafting modification was used in this study by grafting 3‐Glycidoxypropyltrimethoxysilane (KH‐560) onto the surface of silica nanoparticles. The surface‐grafting reaction was confirmed by Fourier transform infrared spectroscopy and thermogravimetric analysis. Then the hydrophilic silica nanoparticles became hydrophobic and dispersed homogeneously in PLA matrix. Scanning electron microscope and Dynamic thermomechanical analysis (DMA) results revealed that the compatibility between PLA and SiO2 was improved. Differential scanning calorimetry and polarized optical microscope tests showed that nano‐silica had a good effect on crystallization of PLA. The transparency analysis showed an increase in transparency of PLA, which had great benefit for the application of PLA. The thermal stability, fire resistance, and mechanical properties were also enhanced because of the addition of nano silica particles. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

13.
Poly(lactic acid)/organo-montmorillonite nanocomposites were prepared by melt intercalation technique. Maleic anhydride-grafted ethylene propylene rubber (EPMgMA) was added into the PLA/OMMT in order to improve the compatibility and toughness of the nanocomposites. The samples were prepared by single screw extrusion followed by compression molding. The effect of OMMT and EPMgMA on the thermal properties of PLA was studied. The thermal properties of the PLA/OMMT nanocomposites have been investigated by using differential scanning calorimeter (DSC) and thermo-gravimetry analyzer (TG). The melting temperature (T m), glass transition temperature (T g), crystallization temperature (T c), degree of crystallinity (χc), and thermal stability of the PLA/OMMT nanocomposites have been studied. It was found that the thermal properties of PLA were greatly influenced by the addition of OMMT and EPMgMA.  相似文献   

14.
Morphological behaviour of poly(lactic acid) during hydrolytic degradation   总被引:1,自引:0,他引:1  
The hydrolytic degradation and the morphological behaviour of a packaging grade of poly(lactic acid) (PLA) were characterized by a series of techniques. During the initial degradation process (stage 1) at a temperature near the glass transition temperature (Tg), the molecular weight of PLA decreased as degradation time increased following a bulk erosion mechanism while the crystallinity increased simultaneously, but no observable weight loss occurred at stage 1. Mainly α-form PLA crystal structure was formed for the crystalline PLA with a low content of d stereo-isomers, but the material displayed a lower regularity, smaller domain size, lower melting temperatures Tm and different motional dynamics as compared to the original PLA with a similar level of crystallinity achieved by annealing. The amorphous PLA with a higher amount of d stereo-isomers also yielded the α crystalline phase as well as stereo-complex crystals at stage 1. When the molecular weight and the crystallinity reached a stable level, PLA started erosion into the degrading aqueous medium. During this stage of degradation (stage 2), the crystalline structure in PLA residues was further modified and both pH and temperature influenced the modification. The degradation at stage 2 was likely to follow a surface erosion mechanism with lactic acid as the major product of the weight loss. Besides the crystallinity effect on the degradation, temperature also played a key role in determining the rate of PLA degradation in both stages. The process was very slow at temperatures below the Tg of PLA but the rate was greatly enhanced at temperatures above the Tg.  相似文献   

15.
The grafting to approach and nitroxide-mediated polymerization (NMP) were used to graft modify starch nanoparticles (SNP) with pH-responsive polymers. SG1-capped poly(2-(dimethylamino)ethyl methacrylate-co-styrene), P(DMAEMA-co-S), and poly(2-(diethylamino)ethyl methacrylate-co-styrene), P(DEAEMA-co-S), with relatively low dispersity and high degree of livingness was synthesized in bulk via NMP using a commercial available alkoxyamine. These macroalkoxyamines were then grafted to vinyl benzyl-functionalized SNP (SNP-VBC) to obtain pH-responsive materials. The grafted SNP were characterized by proton nuclear magnetic resonance spectroscopy, Fourier transform infrared spectroscopy, thermogravimetric analysis, and elemental analysis confirming the successful synthesis of these new materials. Low grafting efficiencies (~6%) were observed for both SNP-grafted materials with pH-responsive polymers, as expected when using the grafting to approach. The pH-responsiveness of SNP-g-P(DMAEMA-co-S) and SNP-g-P(DEAEMA-co-S) was confirmed by measuring the ζ-potential at different pH values. At acidic conditions (pH 3–6) the grafted materials were protonated and exhibited positive ζ-potential, whereas at basic conditions (pH 10–13) the same grafted materials were deprotonated and exhibited negative ζ-potential.  相似文献   

16.
l ‐lactide monomers were grafted onto cellulose nanofibers (CNFs) via ring‐opening polymerization, forming poly(lactic acid) grafted cellulose nanofibers (PLA‐g‐CNFs). PLA‐g‐CNFs and pristine PLA were then blended in chloroform and dried to prepare a master batch. PLA‐g‐CNFs/PLA composite filaments targeted for 3D printing were produced by compounding the master batch in PLA matrix and melt extrusion. The as‐extruded composite filaments were subsequently thermal annealed in a conventional oven, and their morphological, thermal, and mechanical properties were evaluated. PLA was successfully grafted on the surface of CNFs as demonstrated by elemental analysis, and the concentration of grafted PLA was estimated to be 33 wt %. The grafted PLA were highly crystallized, contributing to the growth of crystalline regions of PLA matrix. The incorporation of PLA‐g‐CNFs improved storage modulus of the composite filaments in both low temperature glassy state and high temperature rubbery state. Postextrusion annealing treatment led to 28 and 63% increases for tensile modulus and strength of the filaments, respectively. Simulated Young's moduli from the Halpin‐Tsai and Krenchel models were found comparable with the experimental values. The formed composite filaments are suitable for use in 3D printing. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2017 , 55, 847–855  相似文献   

17.
Poly (lactic acid) (PLA) has properties suitable for many applications. However, PLA's properties are affected by environmental conditions. In this study, the glass-rubber transition temperatures (Tg) of PLA films were measured during immersion (i.e., in-situ) in pure alcohols and alcohol aqueous solutions using a dynamic mechanical analysis technique. The Tg of PLA decreased when immersed in alcohols. For pure aliphatic alcohols, the Tg reduction became smaller as the number of carbons (C1–C10) in the alcohol main chains increased. The Fox equation and the Hansen solubility parameters (HSP)/Flory-Huggins (FH) model were used to explain the Tg reduction. The relationships explained the interactions between PLA and pure alcohols with small molecules (C1–C8), but bigger pure alcohols (C9–C10) did not fit the prediction. The chemical isomerism in pure propanol (i.e., propan-1-ol and propan-2-ol) did not affect the Tg reduction. The Tg reduction in propan-2-ol aqueous solutions was concentration dependent although the partition coefficients based on the HSP and the FH parameters did not fit this relationship. The in-situ immersion of PLA in alcohol solutions could be used to evaluate the change in Tg from the Tg of dry PLA.  相似文献   

18.
This work study is the compatibility, phase structure, and component interaction of poly(lactic acid) (PLA) and glycidyl methacrylate grafted poly(ethylene octane) (GMA-g-POE denoted as mPOE) blend by Fourier transform infrared (FTIR) spectra, dynamic mechanical analysis (DMA), scanning electron microscopy (SEM), and wide-angle X-ray diffraction (WAXD), respectively. All the binary blend compositions exhibit two distinct glass transition temperatures corresponding to the mPOE-rich and PLA-rich phases, respectively. Moreover, these two peaks approach each other with increasing mPOE content, indicating partial compatibility between the PLA and mPOE. Chemical reactions between the end carboxyl groups of the PLA and epoxy groups of the mPOE are considered as the driving force of the enhanced compatibility. They lead to an increase in viscosity of the blends and a decrease in the structural symmetry of PLA. This result brings about a decrease in the spherulite growth rate and the degree of crystallinity. Glass transition temperature (Tg) depression of mPOE is attributed to the negative pressure imposed on the dispersed rubber phase, resulting from differential contraction due to the thermal shrinkage mismatch upon cooling from the melt state. The negative pressure in the dispersed particles, in turn, would cause a dilational effect for the matrix ligament between the particles, and therefore increases the ductility and toughness of PLA.  相似文献   

19.
Pyrene-loaded biodegradable polymer nanoparticles were prepared by incorporating pyrene into the polymer nanoparticles formulated from amphiphilic diblock copolymer, methoxy poly(ethylene glycol)–poly(lactic acid) (MePEG–PLA). Their morphological structure and physical properties were characterized by nuclear magnetic resonance (NMR), dynamic light scattering, fluorescence spectroscopy, transmission electronic microscopy and zeta potential measurements. Further, MePEG–PLA nanoparticles containing pyrene as fluorescent marker were administered intranasally to rats, and the distribution of nanoparticles in the nasal mucosa and the olfactory bulb were visualized by fluorescence microscopy. NMR results confirmed that MePEG–PLA copolymer can form nanoparticles in water, and hydrophilic PEG chains were located on the surface of the nanoparticles. The particle size, zeta potential and pyrene loading efficiency of MePEG–PLA nanoparticles were dependent on the PLA block content in the copolymer. Following nasal administration, the absorption of nanoparticles across the epithelium was rapid, with fluorescence observed in the olfactory bulb at 5 min, and a higher level of fluorescence persisted in the olfactory mucosa than that in the respiratory mucosa. These results show that pyrene could serve as a useful fluorescence probe for incorporation into polymer nanoparticles to study tissue distribution and MePEG–PLA nanoparticles might have a great potential as carriers of hydrophobic drugs.  相似文献   

20.
Low molecular weight (M(w)) poly(L-lactic acid) (PLA) nanoparticles were coated with polyelectrolytes (PEs) by layer-by-layer (LbL) technique using a filtration approach. Poly(allylamine hydrochloride) and poly(sodium 4-styrenesulfonate) were applied as PEs in coating. LbL coating is aimed to use in producing (nano)particulate drug delivery systems with improved biocompatibility and sustained or targeted release of drug substances. Nanoparticles of rapidly biodegradable polymers, like the low M(w) PLA, open up a possibility to control the release of the encapsulated substance by the coating, but set challenges to the coating process due to increased aggregation tendency and degradation rate of the polymer. When the core PLA nanoparticles were prepared by nanoprecipitation, surface properties of the nanoparticles were affected by solvent selection. Successful LbL coating of the PLA nanoparticles was obtained only with chloroform, but not with dichloromethane as the solvent during nanoprecipitation. Reason for this was found to be the more charged surface of the nanoparticles prepared with chloroform compared to the nanoparticles prepared with dichloromethane.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号