首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
Nanocrystalline thin films of complex oxides such as BaTiO3 and LaFeO3 were prepared by pulsed laser ablation without substrate heating. Targets under various Ar pressures were irradiated using an ArF excimer laser. The off-axis configuration of targets and substrates was used to synthesize the films. The crystallinity and chemical composition of the deposited films were strongly dependent on the processing Ar gas pressure. In case of BaTiO3, the film deposited at 10 Pa was a single phase of BaTiO3 with a crystallite size around 7.2 nm. With increasing Ar pressure to 200 Pa, XRD peaks of BaTiO3 as well as BaCO3 were observed. The by-products could be due to reaction with carbon dioxide in air after taking the sample out of the chamber. For LaFeO3, the films deposited under 50 to 200 Pa had a single phase with a crystallite size below 10 nm. When the Ar pressure exceeded 100 Pa, the crystallite size tended to decrease for both BaTiO3 and LaFeO3, which could be due to formation of aggregated nanoparticles. Below 10 Pa, oxygen deficiency was observed. Over 50 Pa, the atomic concentration of all the constituent elements was almost constant, especially the [Ba]/[Ti] and [La]/[Fe] ratios, which were nearly unity. Received: 19 June 2002 / Accepted: 24 June 2002 / Published online: 22 November 2002 RID="*" ID="*"Corresponding author. Fax: +81-298/61-6355, E-mail: yoon-jw@aist.go.jp  相似文献   

2.
Thin chalcogenide films from the systems (GeSe4)1-xGax and (GeSe5)1-xGax with gallium contents up to 20 at. % have been prepared by vacuum evaporation and their stress has been investigated by a cantilever technique. The addition of gallium to the Ge-Se matrix plays an important role in stress formation in the films: films without gallium possess negligible stress, while all gallium-containing films are under compressive stress. The increase of the gallium content leads to structural changes and an increase in the density, which results in higher stress values. For all films, stress reduction with time is observed due to spontaneous relaxation. Received: 2 October 2002 / Accepted: 22 November 2002 / Published online: 28 March 2003 RID="*" ID="*"Corresponding author. Fax: +49-561/8044-136, E-mail: popov@schottky.physik.uni-kassel.de  相似文献   

3.
SrTiO3 thin films were prepared on a fused-quartz substrate by pulsed laser deposition (PLD). Dense and homogeneous films with a thickness of 260 nm were prepared. Optical constants (refractive index n and extinction coefficient k) were determined from the transmittance spectra using the envelope method. The optical band gap energy of the films was found to be 3.58 eV, higher than the 3.22 eV for bulk SrTiO3, attributable to the film stress exerted by the substrate. The dispersion relation of the refractive index vs. wavelength follows the single electronic oscillator model. The refractive index and the packing density for the PLD-prepared SrTiO3 thin films are higher than those for the SrTiO3 films prepared by physical vapor deposition, sol–gel and RF sputtering. Received: 18 March 2002 / Accepted: 7 October 2002 / Published online: 8 January 2003 RID="*" ID="*"Corresponding author. Fax: +86-25/359-5535, E-mail: mszhang@nju.edu.cn  相似文献   

4.
The elemental composition and the surface morphology of thin films grown by laser ablation of barium titanate with femtosecond pulses at 620 nm laser wavelength have been systematically studied according to the experimental pulsed-laser deposition parameters : laser energy density, oxygen pressure, substrate temperature, target–substrate distance and substrate position (in- and off-axis geometry). Firstly, even at high temperature (700 °C), the deposits consist of coalesced particles up to 1-μm in size, mixed in a poorly crystallised tetragonal BaTiO3 thin film. The particles formed in femtosecond pulsed-laser deposition induce a high surface roughness, which is observed whatever the experimental growth conditions and does not correspond to the droplets often observed during laser ablation in the nanosecond regime. As shown by plasma expansion dynamics, these particles propagate toward the substrate in the plasma plume with a low velocity, and are assumed to be produced by gas-phase reactions. Moreover, the cationic concentration evaluated through the Ba/Ti ratio strongly depends on the oxygen pressure in the ablation chamber and the angular position of the substrate along the normal to the target at laser impact. Indeed, the films appear to be enriched in the heavy element (Ba) when the substrate is located at high angular deviation. This fact is correlated to an increase in the lighter species (i.e. Ti) in the central part of the plasma plume. Received: 30 April 2002 / Accepted: 26 August 2002 / Published online: 8 January 2003 RID="*" ID="*"Corresponding author. Fax: +33-1/4354-2878, E-mail: millon@gps.jussieu.fr RID="**" ID="**"Also at: LSMCL, Université de Metz, 57078 Metz Cedex 3, France  相似文献   

5.
ZnGa2O4 thin-film phosphors have been grown on Si(100), Al2O3(0001) and MgO(100) substrates using pulsed laser deposition. The structural characterization was carried out on a series of ZnGa2O4 films grown on various substrates under various substrate temperatures and oxygen pressures. The films grown on these substrates not only have different crystallinity and surface morphology, but also different Zn/Ga composition ratio. The crystallinity and photoluminescence (PL) of the ZnGa2O4 films are highly dependent on the deposition conditions, in particular the stoichiometry ratio of Zn/Ga and the kind of substrate. The variation of Zn/Ga in the films also depends on not only the oxygen pressure but also the substrate temperature during deposition. The PL properties of pulsed laser deposited ZnGa2O4 thin films have indicated that Al2O3(0001) and MgO(100) are promising substrates for the growth of high-quality ZnGa2O4 thin films and that the luminescence brightness depends on the substrate. The luminescence spectra show a broad band extending from 350 to 600 nm and peaking at 460 nm. Received: 11 July 2002 / Accepted: 31 July 2002 / Published online: 28 October 2002 RID="*" ID="*"Corresponding author. Fax: +82-51-6206356, E-mail: jhjeong@pknu.ac.kr  相似文献   

6.
Silicon oxynitride films have been grown on silicon by current-controlled reactive sputtering. The content of oxygen in the films could be well controlled by regulating the sputtering current under the reactive gas of Ar+ N2 with an oxygen content of around 3%. The atomic ratio of oxygen to nitrogen in the silicon oxynitride film became larger with increasing sputtering current. It has been found that electron irradiation of the silicon substrate induces adsorption of oxygen and nitrogen. The degree of oxygen adsorption was about ten times larger than that of nitrogen. This phenomenon is a key mechanism in controlling the film composition. The adsorptive mechanism might be explained by the phenomenon of surface activation by the electron bombardment. Utilizing this technique, wettability by germanium of silicon oxynitride films could be controlled by varying their oxygen and nitrogen contents. A better wetting condition was obtained from films with large atomic ratio of nitrogen to oxygen in the silicon oxynitride film.  相似文献   

7.
Large-area, 1-μm-thick cubic boron nitride (cBN) films were deposited on (001) silicon substrates by electron-cyclotron-resonance-enhanced microwave-plasma chemical vapor deposition (ECR-MP CVD) in a mixture of He-Ar-N2-BF3-H2 gases. With the assistance of fluorine chemistry in the gas phase and substrate reactions, the phase purity of the sp3-configuration was improved to over 85% at a reduced substrate bias voltage of -40 V. The grown films show clear Raman transversal optical (TO) and longitudinal optical (LO) phonon vibration modes, characteristic of cBN. Such Raman spectral characteristics are the first ever observed in cBN films prepared under ECR-MP CVD conditions. Received: 3 May 2002 / Accepted: 7 May 2002 / Published online: 22 November 2002 RID="*" ID="*"Corresponding author. Fax: +852-2788/7830, E-mail: apwjzh@cityu.edu.hk  相似文献   

8.
Yttrium oxide thin films are deposited by microwave electron cyclotron resonance (ECR) plasma assisted metal organic chemical vapour deposition process using an indegeneously developed Y(thd)3 {(2,2,6,6-tetramethyl-3,5-heptanedionate)yttrium} precursor. Depositions were carried out at two different argon gas flow rates keeping precursor and oxygen gas flow rate constant. The deposited coatings are characterized by X-ray photoelectron spectroscopy (XPS), glancing angle X-ray diffraction (GIXRD) and infrared spectroscopy. Optical properties of the films are studied by spectroscopic ellipsometry. Hardness and elastic modulus of the films are measured by load depth sensing nanoindentation technique. Stability of the film and its adhesion with the substrate is inferred from the nanoscratch test.It is shown here that, the change in the argon gas flow rates changes the ionization of the gas in the microwave ECR plasma and imposes a drastic change in the characteristics like composition, structure as well as mechanical properties of the deposited film.  相似文献   

9.
Ta/NiOx/Ni81Fe19/Ta films were prepared by rf reactive and dc magnetron sputtering. The exchange coupling field Hex and the coercivity Hc of NiOx/Ni81Fe19 as a function of the ratio of Ar to O2 during the deposition process were studied. The composition and the chemical states in the interface region of NiOx/NiFe were also investigated using X-ray photoelectron spectroscopy (XPS) and the peak decomposition technique. The results show that the ratio of Ar to O2 has a great effect on the chemical states of nickel in NiOx films. The exchange coupling field Hex and the coercivity Hc of Ta/NiOx/Ni81Fe19/Ta are thus seriously affected. XPS is shown to be a powerful tool for characterizing magnetic films. Received: 18 July 2001 / Accepted: 21 December 2001 / Published online: 3 June 2002 RID="*" ID="*"Corresponding author. Fax: +86-010/6232-7283, E-mail: guanghua_yu@263.net  相似文献   

10.
Laser ablation of single-crystal LiNbO3 in a gas environment is used to grow films on (100) Si substrates heated to 650 °C. The film composition and crystallinity are studied as a function of the nature (reactive, O2, or inert, Ar) and pressure of the gas environment applied during deposition and cooling-down processes, the laser energy density and the target–substrate distance. Experimental results show that a gas pressure close to 1 mbar is required to produce stoichiometric films in either O2 or Ar. The modification of the laser energy density and the target–substrate distance allows us to improve the crystallinity of the films that become textured along the (006) direction. The influence of the experimental parameters on the film properties is discussed in the frame of the formation of a blast wave, that leads to the focusing of the expanding Li species and thus, to the increase of the Li content in the films. Received: 8 February 2001 / Accepted: 9 February 2001 / Published online: 3 May 2001  相似文献   

11.
Epitaxial (001) aluminum nitride (AlN) thin films on (111) Si substrates are prepared using pulsed-laser deposition. The epitaxial structure of the as-prepared thin films is characterized by checking the X-ray-diffraction θ-2 θ scan and pole-figure, using scanning electron microscopy, infrared radiation (IR) spectroscopy and Raman spectroscopy. The surface acoustic-wave resonance at 345 MHz for a 1.5 μm thick AlN film on a (111) Si substrate is observed using an inter-digital electrode. Received: 18 September 2001 / Accepted: 29 January 2002 / Published online: 3 June 2002 RID="*" ID="*"Corresponding author. Fax: +86-25/359-5535, E-mail: liujm@nju.edu.cn  相似文献   

12.
Pb(Zr,Ti)O3 (PZT) ferroelectric thin film was prepared by the sol-gel technique and crystallized with a (111) preferred orientation. The domain structure and polarization reversal behavior were investigated by using scanning force microscopy (SFM) piezoresponse mode at the nanometer scale. A step structure of approximately 30 nm in width was directly observed, which was formed during the polarization reversal process. The presence of the step structure reveals that the forward domain-growth mechanism is the dominant domain-switching process in our PZT thin films. Received: 6 August 2002 / Accepted: 9 August 2002 / Published online: 28 October 2002 RID="*" ID="*"Corresponding author. Fax: +86-21/5241-3122, E-mail: huarongzeng@163.net  相似文献   

13.
Influence of the process parameters like (i) sputtering gas pressure, (ii) target current, (iii) substrate bias voltage and (iv) substrate temperature of a reactive mid-frequency dual-magnetron sputtering on (a) surface defects and (b) mechanical properties of Ti/TiN multilayered films was investigated. The forming mechanisms of the observed droplets and craters were analyzed. Results showed when: (1) pressure of Ar/N2 gases PAr/N2 was at 0.31 Pa and substrate temperature was in certain range, the size and the density of the surface defects on the TiN films tended to decrease with increasing the target current and the pulsed bias voltage; (2) the optimal deposition parameters for accomplishing fewer surface defects were used, increasing the thickness of the Ti buffer layer decreased the microhardness in certain level, and the adhesion was firstly increased and then decreased as thickness reaching and/or beyond a critical value. Results also showed that selection of optimized process parameters evidently minimized the surface defects and improved the mechanical properties of the film.  相似文献   

14.
The preparation in thin film form of the known icosahedral phase in Ti-Ni-Zr bulk alloys has been investigated as a function of substrate temperature. Films were deposited by pulsed laser deposition on sapphire substrates at temperatures ranging from room temperature to 350 °C. Morphological and structural modifications have been followed by grazing-incidence and θ–2θ X-ray diffraction, transmission electron diffraction and imaging. Chemical composition has been analyzed by electron probe microanalysis. The in-depth variation of composition has been studied by secondary neutral mass spectroscopy. We show that pulsed laser deposition at 275 °C makes the formation of a 1-μm-thick film of Ti-Ni-Zr quasicrystalline textured nanocrystallites possible. Received: 7 June 2001 / Accepted: 18 February 2002 / Published online: 3 June 2002 RID="*" ID="*"Corresponding author. Fax: +33-3/8357-6300, E-mail: brien@mines.u-nancy.fr  相似文献   

15.
Super-hard and elastic carbon nitride films have been synthesized by using an off-plane double-bend filtered cathodic vacuum arc combined with a radio-frequency nitrogen-ion beam source. A nanoindenter was used to determine the micromechanical properties of the deposited films. X-ray photoelectron spectroscopy was used to study the composition and bonding structure of the deposited films. The influence of nitrogen ion energy on the structure and micromechanical properties of the deposited films was systematically studied. As the nitrogen ion energy is increased, the microhardness, Young’s modulus and elastic recovery also increase, reaching a maximum of 47 GPa, 400 GPa, and 87.5%, respectively, at a nitrogen ion energy of 100 eV. Further increase in nitrogen ion energy results in a decrease in microhardness, Young’s modulus and elastic recovery of the deposited films. The formation of five-membered rings, as indicated by XPS, which causes bending of the basal planes and forms a three-dimensional rigid covalent bond network, contributes to the super-hardness, Young’ s modulus and high elastic recovery of the films deposited at a nitrogen ion energy of 100 eV. Revised version: 29 October 2001 / Accepted: 7 November 2001 / Published online: 2 May 2002  相似文献   

16.
The characteristics of surface-acoustic-wave (SAW) devices on various substrates were measured by a network analyzer in the temperature range from 0 to 80 °C. Based on the structure of IDT/AlN/LiNbO3, it was revealed that the magnitude of the temperature coefficient of frequency (TCF) of a SAW on a LiNbO3 substrate was significantly decreased due to the thickness increase of AlN thin film deposited on the LiNbO3 substrate. The TCF of a SAW on an AlN/LiNbO3 device was measured to be about -51 ppm/°C at h/λ=0.1, where h is the thickness of the AlN film and λ is the wavelength of the SAW. This indicates that the deposition of an AlN film on a LiNbO3 substrate could improve the temperature stability, as compared with that of a SAW on a LiNbO3 substrate (-73 ppm/°C). The SAW device on the ST-X quartz is shown to have a positive TCF as the AlN thin film is deposited on the surface of the ST-X quartz. In addition, the phase velocity (Vp) of the SAW on an AlN/LiNbO3 substrate was significantly increased by the increase of AlN thickness (h/λ). Received: 14 October 2002 / Accepted: 15 October 2002 / Published online: 29 January 2003 RID="*" ID="*"Corresponding author. Fax: +886-7/525-4199, E-mail: ycc@ee.nsysu.edu.tw  相似文献   

17.
Thin silicate sol-gel films with four different crack patterns were created reproducibly by controlling the film deposition parameters. The crack geometry, periodicity, and amplitude were studied experimentally as a function of the film thickness, curing time, and temperature. Direct evidence was found that the physical interplay between stress relief through film cracking and stress relief through film warping results in sawtooth, spiral, closed loop, or straight line crack trajectories. Received: 25 March 2002 / Accepted: 1 July 2002 / Published online: 17 December 2002 RID="*" ID="*"Corresponding author. Fax: +1-941-359-4396, Email: sendova@ncf.edu  相似文献   

18.
Compositionally graded (Ba1-xSrx)TiO3 (BST) (x:0.0∼0.25) thin films were grown on Pt (111)/TiO2/SiO2/Si (100) substrates using layer-by-layer pulsed laser deposition in the temperature range 550–650 °C. Both downgraded (Ba/Sr ratio varying from 100/0 at the bottom surface to 75/25 at the top surface) and upgraded (Ba/Sr ratio varying from 75/25 at the bottom surface to 100/0 at the top surface) BST films were prepared. Their microstructures were systematically studied by X-ray diffractometry and scanning electron microscopy. A grain morphology transition from large ‘rosettes’ (>0.30 μm) to small compact grains (70–110 nm) was observed in the downgraded BST films as the deposition temperature was increased from 550 to 650 °C. No such grain morphology transition was detected in the upgraded BST films. Dielectric measurements with metal electrodes revealed an enhanced dielectric behavior in the downgraded films. This enhancement is mainly attributed to the large compressive stress field built up near the interface between the downgraded film and substrate. Furthermore, the BaTiO3 layer in the downgraded BST films not only serves as a bottom layer but also as an excellent seeding layer for enhancing the crystallization of the subsequent film layers in the downgraded films. Received: 10 December 2001 / Accepted: 12 March 2002 / Published online: 19 July 2002 RID="*" ID="*"Corresponding author. Fax: 86-25/359-5535, E-mail: xhzhu@public1.ptt.js.cn  相似文献   

19.
Oxygen plasma and high pressure H2O vapor heat treatment were applied to fabrication of n-channel polycrystalline silicon thin film transistors (poly-Si TFTs). 13.56 MHz-oxygen-plasma treatment at 250 °C, 100 W for 5 min effectively reduced defect states of 25-nm-thick silicon films crystallized by 30 ns-pulsed XeCl excimer laser irradiation. 1.3×106-Pa-H2O vapor heat treatment at 260 °C for 3 h was carried out in order to improve electrical properties of SiOx gate insulators and SiOx/Si interfaces. A carrier mobility of 470 cm2/V s and a low threshold voltage of 1.8 V were achieved for TFTs fabricated with crystallization at 285 mJ/cm2. Received: 18 November 2002 / Accepted: 25 November 2002 / Published online: 11 April 2003 RID="*" ID="*"Corresponding author. Fax: +81-42/388-7109, E-mail: tsamesim@cc.tuat.ac.jp  相似文献   

20.
We have investigated the interface mixing of Ni2O3/SiO2, NiO/SiO2, and Ni/SiO2 induced by the irradiation with Ar, Kr and Xe ions of energies ranging from 90 MeV to 260 MeV. Since these energies are in the electronic stopping regime, atomic transport processes will not be directly initiated by elastic ion–target collisions, but need to be excited by secondary processes like electron–phonon coupling or Coulomb explosion. Nevertheless, we have observed a strong mixing effect in the ceramic systems if the electronic energy loss exceeds a certain threshold value. Estimation of an effective diffusion constant indicates that diffusion takes place in the molten ion track. In contrast to the ceramics, the metallic Ni layer is still insensitive even for the highest electronic stopping power used (Se=28 keV/nm) and does not exhibit mixing with its SiO2 substrate. In addition, NiO/SiO2 and Ni/SiO2 were irradiated in the nuclear stopping regime with 600 keV Kr and 900 keV Xe–ions. Here the intermixing effect is in good agreement with the assumption of ballistic atomic transport. Received: 5 February 2002 / Accepted: 11 February 2002 / Published online: 3 May 2002 RID="*" ID="*"Corresponding author. Fax: +49-711/685-3866, E-mail: bolse@ifs.physik.uni-stuttgart.de  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号