首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
Seven differently glycosidated sugar amino acids (SSAs) derived from glucosamine have been prepared. Following standard solution‐phase peptide‐coupling procedures, the glycosidated 2‐amino‐2‐deoxy‐D ‐glucopyranosiduronic acids were condensed with natural amino acids to furnish useful heterodi‐ and ‐trimeric building blocks to be used in peptide synthesis. Combinations of these building blocks yielded hetero‐oligomeric peptides with two sugar amino acid units in different distances to each other. These were prepared to evaluate the influence of glycosidic side chains on the peptide backbone. Conformations of selected examples were examined by means of ROESY spectroscopy in combination with molecular dynamics (MD) simulations and circular‐dichroism (CD) studies.  相似文献   

2.
采用Endoproteinase Glu-C, Lys-C和Trypsin 3种蛋白酶分别水解β2-微球蛋白, 产生一系列肽段, 利用固定在琼脂糖珠上的单克隆抗体与其发生免疫亲和反应. 利用基质辅助激光解吸电离飞行时间质谱(MALDI-TOF-MS)技术, 对抗原决定簇肽段-抗体复合物进行系统研究, 结果表明, 与抗体结合部位即连续表位的位点为肽段(59~69)(DWSFYLLYYTE). 该研究方法简便、准确, 可用来对其它抗原连续表位的快速测定.  相似文献   

3.
The biosynthesis of the vancomycin aglycone involves three oxidative phenol coupling reactions, each catalyzed by a discrete cytochrome P450-like enzyme. Studies on the mechanism and specificity of the enzyme (called OxyB) catalyzing the first coupling, require access to suitable linear peptide precursors, each conjugated as a thioester to a peptide carrier domain of the vancomycin non-ribosomal peptide synthetase. An efficient route to representative free linear peptides is described here. The method makes use of Alloc-chemistry during solid-phase assembly of the peptide backbone, but importantly and in contrast to earlier efforts, largely avoids the use of amino acid side chain protecting groups. In this way, the target linear peptides can be released directly from the solid support under very mild conditions.  相似文献   

4.
Doubly protonated peptides that undergo an electron transfer reaction without dissociation in a linear ion trap can be subjected to beam-type collisional activation upon transfer from the linear ion trap into an adjacent mass analyzer, as demonstrated here with a hybrid triple quadrupole/linear ion trap system. The activation can be promoted by use of a DC offset difference between the ion trap used for reaction and the ion trap into which the products are injected of 12-16 V, which gives rise to energetic collisions between the transferred ions and the collision/bath gas employed in the linear ion trap used for ion/ion reactions. Such a process can be executed routinely on hybrid linear ion trap/triple quadrupole tandem mass spectrometers and is demonstrated here with several model peptides as well as a few dozen tryptic peptides. Collisional activation of the peptide precursor ions that survive electron transfer frequently provides structural information that is absent from the precursor ions that fragment spontaneously upon electron transfer. The degree to which additional structural information is obtained by collisional activation of the surviving singly charged peptide ions depends upon peptide size. Little or no additional structural information is obtained from small peptides (<8 residues) due to the high electron transfer dissociation (ETD) efficiencies noted for these peptides as well as the extensive sequence information that tends to be forthcoming from ETD of such species. Collisional activation of the surviving electron transfer products provided greatest benefit for peptides of 8-15 residues.  相似文献   

5.
We used CD spectroscopy to study the conformations of three cyclic peptides (CP10E: cyclo[Glu(OBz1)-Pro-Gly-Glu(OBzl)-Gly]2, CP10K: cyclo[Lys(Z)-Pro-Gly-Lys(Z)-Gly]2, CP12K: cyclo[Phe-Lys(Z)-Pro-Gly-Lys(Z)-Gly]2 and their correspondent linear peptides (LP10E: Boc-[Glu(OBzl)-Pro-Gly-Glu(OBzl)-Gly]2-OPac, LP10K: Boc-[Lys(Z)-Pro-Lys(Z)-Pro]2-OMe, LP 12K: Bao- [-Lys(Z)-Pro-Gly-Lys(Z)-Gly]2- OMe) in three solvents of different polarity (chloroform, acetonitrile, 2,2,2-triliuroethanol), and it was found that all of linear and cyclicpeptides exists asγ-turn conformation in chloroform, however, in TFE& CH3CN solutions, the three linear peptides are inβ Ⅱ-turn conformations. CP10E isβI-turn conformation, CP10K &CP12K exists in more than one types of turn conformations. On the basis of our experiments, it was concluded: 1) In the presence of conformational constrained amino acids short linear peptides form obvious secondary structure; 2)The solvent polarity has influence on the peptide conformation and this influence on linear peptides is greater than that on cyclic peptides; 3)The backbone of cyclic peptide has constraint effect on its conformation and makes the secondary structure of cyclic peptide different from that of its relative linear peptide. This information might give some cules in the design of bioactive peptides with different receptor selectivity.  相似文献   

6.
Cyclic peptides provide attractive lead compounds for drug discovery and excellent molecular probes in biomedical research. Large combinatorial libraries of cyclic peptides can now be routinely synthesized by the split-and-pool method and screened against biological targets. However, post-screening sequence determination of hit peptides has been problematic. In this report, a high-throughput method for the sequence determination of cyclic peptide library members has been developed. TentaGel microbeads (90 mum) were spatially segregated into outer and inner layers; cyclic peptides were displayed on the bead surface, whereas the inner core of each bead contained the corresponding linear peptide as the encoding sequence. After screening of the cyclic peptide library against a macromolecular target, the identity of hit peptides was determined by sequencing the linear encoding peptides inside the bead using a partial Edman degradation/mass spectrometry method. On-bead screening of an octapeptide library (theoretical diversity of 160 000) identified cyclic peptides that bind to streptavidin. A 400-member library of tyrocidine A analogues was synthesized on TentaGel macrobeads and solution-phase screening of the library directly against bacterial cells identified a tyrocidine analogue of improved antibacterial activity. Our results demonstrate that the new method for cyclic peptide sequence determination is reliable, operationally simple, rapid, and inexpensive and should greatly expand the utility of cyclic peptides in biomedical research.  相似文献   

7.
A variety of backbone-modified peptides were desorbed by fast atom bombardment and collisionally activated. These peptide modifications involve the replacement of a normal [CONH] peptide linkage with such groups as thiomethylene ether (CH2S), thioamide (CSNH), methyleneamine (CH2NH), and thiomethylene sulfoxide (CH2SO) moieties. Modified linear peptides decompose to give fragmentations characteristic of the modifications as well as typical peptide bond fragments. The presence of a replacement group in cyclic peptides can induce new fragmentations. The presence of other functional groups, such as an exocyclic N-terminal residue, however, can dominate the observed fragmentations. Upon collisional activation, unmodified linear peptides fragment to give N-terminal ions as the most abundant daughter ions. In comparison, ψ[CH2NH] and ψ[CH2S ] modified linear peptides decompose to give prominent C-terminal sequence ions. The ψ[CH2SO] modified linear peptides, however, fragment into both N- and C-terminal ions of high relative abundance. Depending on the modification, daughter ions or internal fragment ions are observed that are characteristic of the amide bond replacement. Useful structural information can therefore be obtained.  相似文献   

8.
Efficient and site-specific modification of native peptides and proteins is desirable for synthesizing antibody-drug conjugates as well as for constructing chemically modified peptide libraries using genetically encoded platforms such as phage display. In particular, there is much interest in efficient multicyclization of native peptides due to the appeals of multicyclic peptides as therapeutics. However, conventional approaches for multicyclic peptide synthesis require orthogonal protecting groups or non-proteinogenic clickable handles. Herein, we report a cysteine-directed proximity-driven strategy for the constructing bicyclic peptides from simple natural peptide precursors. This linear to bicycle transformation initiates with rapid cysteine labeling, which then triggers proximity-driven amine-selective cyclization. This bicyclization proceeds rapidly under physiologic conditions, yielding bicyclic peptides with a Cys-Lys-Cys, Lys-Cys-Lys or N-terminus-Cys-Cys stapling pattern. We demonstrate the utility and power of this strategy by constructing bicyclic peptides fused to proteins as well as to the M13 phage, paving the way to phage display of novel bicyclic peptide libraries.  相似文献   

9.
Myoglobin CNBr peptides, constituting the commercially available molecular weight calibration kits for sodium dodecyl sulfate-polyacrylamide gel electrophoresis, were analyzed by microsequencing after electroblotting on polyvinylidene difluoride (Immobilon) membranes. An obvious disagreement was found between peptide identification and the data provided by the manufacturers. We observed 6 peptides from Mr 2500 to 17,000 corresponding, in increasing size order, to the 3 peptides resulting from the total CNBr digestion, to 2 incompletely cleaved peptides and to the intact myoglobin. Using a corrected calibration curve, a linear relationship was established from Mr 6000 to 43,000 and a second one for shorter peptides. This method of electrophoresis and electroblotting, easily adapted for peptides, is a powerful tool for peptide identification correlated with size determination. It is especially useful for CNBr-cleaved peptides.  相似文献   

10.
设计合成了具有2个活性序列的线性和环状多肽及具有单个活性序列的短链多肽, 研究了它们的杀菌活性、 细胞毒性及溶血性. 结果表明, 线性肽和环状肽的杀菌活性高于短链肽. 利用计算模拟的方法计算了多肽与细菌细胞膜中一种重要的成分磷脂酰甘油(DMPG)的结合能. 结果表明, 多肽-DMPG的结合能与多肽的杀菌活性具有较高的相关性, 线性和环状多肽与DMPG的结合能大于短链肽. 线性和环状多肽均含有2个活性序列, 可提供多个荷正电氨基酸与荷负电的磷脂结合, 结合能较大, 杀菌活性较强. 采用模拟生物膜对其中几条多肽的作用机理进行了初步研究. 结果表明, 该类多肽有可能使正常哺乳动物细胞的细胞膜产生孔洞; 而对于细菌细胞膜, 多肽并未在膜上产生明显孔洞, 而是引起了细菌细胞膜的聚集.  相似文献   

11.
A general strategy was developed for the intracellular delivery of linear peptidyl ligands through fusion to a cell‐penetrating peptide and cyclization of the fusion peptides via a disulfide bond. The resulting cyclic peptides are cell permeable and have improved proteolytic stability. Once inside the cell, the disulfide bond is reduced to produce linear biologically active peptides. This strategy was applied to generate a cell‐permeable peptide substrate for real‐time detection of intracellular caspase activities during apoptosis and an inhibitor for the CFTR‐associated ligand (CAL) PDZ domain as a potential treatment for cystic fibrosis.  相似文献   

12.
Peptides that bind to poly(phenylene vinylene) (PPV) were identified by the phage display method. Aromatic amino acids were enriched in these peptide sequences, suggesting that a π-π interaction is the key interaction between the peptides and PPV. The surface plasmon resonance (SPR) experiments using chemically synthesized peptides demonstrated that the Hyp01 peptide, with the sequence His-Thr-Asp-Trp-Arg-Leu-Gly-Thr-Trp-His-His-Ser, showed an affinity constant (7.7 × 10(5) M(-1)) for the target, hyperbranched PPV (hypPPV) film. This value is 15-fold greater than its affinity for linear PPV (linPPV). In contrast, the peptide screened for linPPV (Lin01) showed the reverse specificity for linPPV. These results suggested that the Hyp01 and Lin01 peptides selectively recognized the linear or branched structure of PPVs. The Ala-scanning experiment, circular dichroism (CD) spectrometry, and molecular modeling of the Hyp01 peptide indicated that adequate location of two Trp residues by forming the polyproline type II (P(II)) helical conformation allowed the peptide to specifically interact with hypPPV.  相似文献   

13.
14.
Superior to linear peptides in biological activities, cyclic peptides are considered to have great potential as therapeutic agents. To identify cyclic‐peptide ligands for therapeutic targets, phage‐displayed peptide libraries in which cyclization is achieved by the covalent conjugation of cysteines have been widely used. To resolve drawbacks related to cysteine conjugation, we have invented a phage‐display technique in which its displayed peptides are cyclized through a proximity‐driven Michael addition reaction between a cysteine and an amber‐codon‐encoded N?‐acryloyl‐lysine (AcrK). Using a randomized 6‐mer library in which peptides were cyclized at two ends through a cysteine–AcrK linker, we demonstrated the successful selection of potent ligands for TEV protease and HDAC8. All selected cyclic peptide ligands showed 4‐ to 6‐fold stronger affinity to their protein targets than their linear counterparts. We believe this approach will find broad applications in drug discovery.  相似文献   

15.
Superior to linear peptides in biological activities, cyclic peptides are considered to have great potential as therapeutic agents. To identify cyclic‐peptide ligands for therapeutic targets, phage‐displayed peptide libraries in which cyclization is achieved by the covalent conjugation of cysteines have been widely used. To resolve drawbacks related to cysteine conjugation, we have invented a phage‐display technique in which its displayed peptides are cyclized through a proximity‐driven Michael addition reaction between a cysteine and an amber‐codon‐encoded N?‐acryloyl‐lysine (AcrK). Using a randomized 6‐mer library in which peptides were cyclized at two ends through a cysteine–AcrK linker, we demonstrated the successful selection of potent ligands for TEV protease and HDAC8. All selected cyclic peptide ligands showed 4‐ to 6‐fold stronger affinity to their protein targets than their linear counterparts. We believe this approach will find broad applications in drug discovery.  相似文献   

16.
Mammalian ribonucleotide reductase (mRR) is a potential target for cancer intervention. A series of lactam-bridged cyclic peptide inhibitors (1-9) of mRR have been synthesized and tested in previous work. These inhibitors consist of cyclic and linear regions, causing their mass spectral characterization to be a challenge. We determined the fragmentation mechanism of cyclic peptides 1-9 using an ion-trap mass spectrometer equipped with an ESI source. Low-energy collision-induced dissociation of sodiated cyclic peptides containing linear branches follows a general pathway. Fragmentation of the linear peptide region produced mainly a and b ions. The ring peptide region was more stable and ring opening required higher collision energy, mainly occurring at the amide bond adjacent to the lactam bridge. The sodium ion, which bound to the carbonyl oxygen of the lactam bridge, acted as a fixed charge site and directed a charge-remote, sequence-specific fragmentation of the ring-opened peptide. Amino acid residues were cleaved sequentially from the C-terminus to the N-terminus. Our findings have established a new way to sequence cyclic peptides containing a lactam bridge based on charge-remote fragmentation. This methodology will permit unambiguous identification of high-affinity ligands within cyclic peptide libraries.  相似文献   

17.
Cyclic peptides are appealing targets in the drug-discovery process. Unfortunately, there currently exist no robust solid-phase strategies that allow the synthesis of large arrays of discrete cyclic peptides. Existing strategies are complicated, when synthesizing large libraries, by the extensive workup that is required to extract the cyclic product from the deprotection/cleavage mixture. To overcome this, we have developed a new safety-catch linker. The safety-catch concept described here involves the use of a protected catechol derivative in which one of the hydroxyls is masked with a benzyl group during peptide synthesis, thus making the linker deactivated to aminolysis. This masked derivative of the linker allows BOC solid-phase peptide assembly of the linear precursor. Prior to cyclization, the linker is activated and the linear peptide deprotected using conditions commonly employed (TFMSA), resulting in deprotected peptide attached to the activated form of the linker. Scavengers and deprotection adducts are removed by simple washing and filtration. Upon neutralization of the N-terminal amine, cyclization with concomitant cleavage from the resin yields the cyclic peptide in DMF solution. Workup is simple solvent removal. To exemplify this strategy, several cyclic peptides were synthesized targeted toward the somatostatin and integrin receptors. From this initial study and to show the strength of this method, we were able to synthesize a cyclic-peptide library containing over 400 members. This linker technology provides a new solid-phase avenue to access large arrays of cyclic peptides.  相似文献   

18.
Cyclic peptides are promising next-generation therapeutics with improved biological stability and activity. A catalyst-free stapling method for cysteine-containing peptides has been developed that enables fine-tuning of the macrocycle by using the appropriate regioisomers of fluorobenzene linkers. Stapling was performed on the unprotected linear peptide or, more conveniently, directly on-resin after peptide synthesis. NMR spectroscopy and circular dichroism studies demonstrate that the type of stapling can tune the secondary structures of the peptides. The method was applied to a set of potential agonists for melanocortin receptors, generating a library of macrocyclic potent ligands with ortho, meta or para relationships between the thioethers. Their small but significant differences in potency and efficacy demonstrate how the method allows facile fine-tuning of macrocyclic peptides towards biological targets from the same linear precursor.  相似文献   

19.
Short linear peptides can overcome certain limitations of small molecules for targeting protein–protein interactions (PPIs). Herein, the interaction between the human chemokine CCL19 with chemokine receptor CCR7 was investigated to obtain receptor‐derived CCL19‐binding peptides. After identifying a linear binding site of CCR7, five hexapeptides binding to CCL19 in the low micromolar to nanomolar range were designed, guided by pharmacophore and lipophilicity screening of computationally generated peptide libraries. The results corroborate the applicability of the computational approach and the chosen selection criteria to obtain short linear peptides mimicking a protein–protein interaction site.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号