首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 855 毫秒
1.
As a model of photosynthetic unit (PSU), self-assembled aggregates of pigment-protein complexes from photosynthetic bacteria were prepared in a lipid bilayer by reconstitution of the light-harvesting 2 (LH2) complex and light-harvesting 1-reaction center (LH1-RC) complex through detergent removal of their micelles in the presence of lipids. By performing polarization-controlled fluorescence and fluorescence-excitation spectroscopy on single aggregates at a temperature of 5 K, the composition of individual aggregates was determined and excitation energy transfer (EET) between constituent complexes was observed. LH2 and LH1-RC from a bacterium, Rhodobacter (Rb.) sphaeroides, were found to form a trimeric aggregate in which EET takes place from one LH2 to two LH1-RCs. In contrast, a heterodimer of LH2 and LH1-RC in which EET works was found to assemble from a combination of complexes of different bacterial species, that is, LH2 from Rb. sphaeroides and LH1-RC from Rhodopseudomonas (Rps.) palustris.  相似文献   

2.
We overview experimental and theoretical studies of energy transfer in the photosynthetic light-harvesting complexes LH1, LH2, and LHCII performed during the past decade since the discovery of high-resolution structure of these complexes. Experimental findings obtained with various spectroscopic techniques makes possible a modelling of the excitation dynamics at a quantitative level. The modified Redfield theory allows a precise assignment of the energy transfer pathways together with a direct visualization of the whole excitation dynamics where various regimes from a coherent motion of delocalized exciton to a hopping of localized excitations are superimposed. In a single complex it is possible to observe the switching between these regimes driven by slow conformational motion (as we demonstrate for LH2). Excitation dynamics under quenched conditions in higher-plant complexes is discussed.  相似文献   

3.
Recent experiments on a variety of photosynthetic antenna systems have revealed that coherences among electronic states persist longer than previously anticipated. In an ensemble measurement, the observed dephasing of a coherent state can occur because of either disorder across the ensemble or decoherence from interactions with the bath. Distinguishing how much such disorder affects the experimentally observed dephasing rate is paramount for understanding the role that quantum coherence may play in energy transfer through these complexes. Here, we show that two-dimensional electronic spectra can distinguish between the limiting cases of homogeneous dephasing (decoherence) and inhomogeneous dephasing by examining how the quantum beat frequency changes within a cross peak. For the antenna complex LH2 isolated from Rhodobacter sphaeroides , we find that dephasing of the coherence between the B850 and B800 rings arises predominantly from inhomogeneity. In contrast, within the Fenna-Matthews-Olson (FMO) complex from Chlorobium tepidum , dephasing of the coherence between the first two excitons appears quite homogeneous. Thus, the observed dephasing rate sets an upper bound on decoherence for the LH2 complex while establishing both an upper and lower bound for the FMO complex.  相似文献   

4.
Photosynthetic organisms have light-harvesting complexes that absorb and transfer energy efficiently to reaction centers. Light-harvesting complexes (LHCs) have received increased attention in order to understand the natural photosynthetic process and also to utilize their unique properties in fabricating efficient artificial and bio-hybrid devices to capture solar energy. In this work, LHCs with different architectures, sizes, and absorption spectra, such as chlorosomes, Fenna–Matthews–Olson (FMO) protein, LH2 complex, and phycobilisome have been characterized by an electrospray-scanning mobility particle-sizer system (ES-SMPS). The size measured by ES-SMPS for FMO, chlorosomes, LH2, and phycobilisome were 6.4, 23.3, 9.5, and 33.4?nm, respectively. These size measurements were compared with values measured by dynamic light scattering and those reported in the literature. These complexes were deposited onto a transparent substrate by electrospray deposition. Absorption and fluorescence spectra of the deposited LHCs were measured. It was observed that the LHCs have light absorption and fluorescence spectra similar to that in solution, demonstrating the viability of the process.  相似文献   

5.
Biohybrid antenna systems have been constructed that contain synthetic chromophores attached to 31mer analogues of the bacterial photosynthetic core light-harvesting (LH1) β-polypeptide. The peptides are engineered with a Cys site for bioconjugation with maleimide-terminated chromophores, which include synthetic bacteriochlorins (BC1, BC2) with strong near-infrared absorption and commercial dyes Oregon green (OGR) and rhodamine red (RR) with strong absorption in the blue-green to yellow-orange regions. The peptides place the Cys 14 (or 6) residues before a native His site that binds bacteriochlorophyll a (BChl-a) and, like the native LH proteins, have high helical content as probed by single-reflection IR spectroscopy. The His residue associates with BChl-a as in the native LH1 β-polypeptide to form dimeric ββ-subunit complexes [31mer(-14Cys)X/BChl](2), where X is one of the synthetic chromophores. The native-like BChl-a dimer has Q(y) absorption at 820 nm and serves as the acceptor for energy from light absorbed by the appended synthetic chromophore. The energy-transfer characteristics of biohybrid complexes have been characterized by steady-state and time-resolved fluorescence and absorption measurements. The quantum yields of energy transfer from a synthetic chromophore located 14 residues from the BChl-coordinating His site are as follows: OGR (0.30) < RR (0.60) < BC2 (0.90). Oligomeric assemblies of the subunit complexes [31mer(-14Cys)X/BChl](n) are accompanied by a bathochromic shift of the Q(y) absorption of the BChl-a oligomer as far as the 850-nm position found in cyclic native photosynthetic LH2 complexes. Room-temperature stabilized oligomeric biohybrids have energy-transfer quantum yields comparable to those of the dimeric subunit complexes as follows: OGR (0.20) < RR (0.80) < BC1 (0.90). Thus, the new biohybrid antennas retain the energy-transfer and self-assembly characteristics of the native antenna complexes, offer enhanced coverage of the solar spectrum, and illustrate a versatile paradigm for the construction of artificial LH systems.  相似文献   

6.
We have studied the triplet energy transfer (TET) for photosynthetic light-harvesting complexes, the bacterial light-harvesting complex II (LH2) of Rhodospirillum molischianum and Rhodopseudomonas acidophila, and the peridinin-chlorophyll a protein (PCP) from Amphidinium carterae. The electronic coupling factor was calculated with the recently developed fragment spin difference scheme (You and Hsu, J. Chem. Phys. 2010, 133, 074105), which is a general computational scheme that yields the overall coupling under the Hamiltonian employed. The TET rates were estimated based on the couplings obtained. For all light-harvesting complexes studied, there exist nanosecond triplet energy transfer from the chlorophylls to the carotenoids. This result supports a direct triplet quenching mechanism for the photoprotection function of carotenoids. The TET rates are similar for a broad range of carotenoid triplet state energy, which implies a general and robust TET quenching role for carotenoids in photosynthesis. This result is also consistent with the weak dependence of TET kinetics on the type or the number of π conjugation lengths in the carotenoids and their analogues reported in the literature. We have also explored the possibility of forming triplet excitons in these complexes. In B850 of LH2 or the peridinin cluster in PCP, it is unlikely to have triplet exciton since the energy differences of any two neighboring molecules are likely to be much larger than their TET couplings. Our results provide theoretical limits to the possible photophysics in the light-harvesting complexes.  相似文献   

7.
Abstract— In this short communication we present the stoichiometric ratio of bacteriochlorophyll, bacteriopheophytin and carotenoids in a few photosynthetic purple bacteria complexes (whose two-dimensional or three-dimensional structures are well known) determined using the spectrum-reconstruction method (SRCM). An important conclusion of our pigment stoichiometric analysis is the evidence for the absence of the second carotenoid in the light-harvesting complex 2 (LH2). In the process, we also highlight the useful application of SRCM in determining the molar extinction coefficients of carotenoids present in LH1, LH2 or reaction centers for which these values are not known due to isolation problems and/or stability.  相似文献   

8.
Ru(II)-bis-pyridine complexes typically absorb below 450?nm in the UV spectrum and their molar extinction coefficients are only moderate (ε<16,000 M(-1) cm(-1)). Thus, Ru(II)-polyimine complexes that show intense visible-light absorptions are of great interest. However, no effective light-harvesting ruthenium(II)/organic chromophore arrays have been reported. Herein, we report the first visible-light-harvesting Ru(II)-coumarin arrays, which absorb at 475?nm (ε up to 63,300 M(-1) cm(-1), 4-fold higher than typical Ru(II)-polyimine complexes). The donor excited state in these arrays is efficiently converted into an acceptor excited state (i.e., efficient energy-transfer) without losses in the phosphorescence quantum yield of the acceptor. Based on steady-state and time-resolved spectroscopy and DFT calculations, we proposed a general rule for the design of Ru(II)-polypyridine-chromophore light-harvesting arrays, which states that the (1)IL energy level of the ligand must be close to the respective energy level of the metal-to-ligand charge-transfer (MLCT) states. Lower energy levels of (1)IL/(3)IL than the corresponding (1)MLCT/(3)MLCT states frustrate the cascade energy-transfer process and, as a result, the harvested light energy cannot be efficiently transferred to the acceptor. We have also demonstrated that the light-harvesting effect can be used to improve the upconversion quantum yield to 15.2?% (with 9,10-diphenylanthracene as a triplet-acceptor/annihilator), compared to the parent complex without the coumarin subunit, which showed an upconversion quantum yield of only 0.95?%.  相似文献   

9.
The subunit light-harvesting 1 (LH 1) complexes isolated from photosynthetic bacteria Rhodospirillum rubrum using n-octyl-beta-glucoside were reassociated and adsorbed on a mica substrate using spin-coat methods with the aim of using this LH complex in a nanodevice. The near-IR absorption and fluorescence spectra of the LH 1 complexes indicated that the LH 1 complex on the mica was stable, and efficient energy transfer from a carotenoid to a bacteriochlorophyll a was observed. Atomic force microscopy of the reassociated LH 1 complexes, under air, showed the expected ringlike structure. The outer and inner diameters of the ringlike structure of the LH 1 complex were approximately 30 and 8 nm, respectively, and the ringlike structure protruded by 0.2-0.6 nm.  相似文献   

10.
Hierarchical organization of light-absorbing molecules is integral to natural light harvesting complexes and has been mimicked by elegant chemical systems. A challenge is to attain such spatial organization among nanoscale systems. Interactions between nanoscale systems, e.g., conjugated polymers, carbon nanotubes, quantum dots, and so on, are of interest for basic and applied reasons. However, typically the excited-state interactions and dynamics are examined in rather complex blends, such as cast films. A model system with complexity intermediate between a film and a supramolecular system would yield helpful insights into electronic energy and charge transfer. Here, we report a simple and versatile approach to achieving spatially defined organization of colloidal CdSe, CdSe/ZnS core/shell, or PbS nanocrystals (quantum dots) with poly(3-hexylthiophenes) (P3HTs) using micelles of poly(styrene-b-4-vinylpyridine) (PS-b-P4VP) as the main structural motif. We compare the characteristics of this system to those of natural light-harvesting complexes. Bulk heterojunction films (and related systems) are characterized by electronic interactions, and therefore dynamics of charge and energy transfer, at interfaces rather than between specific donor-acceptor molecules. Owing to structural disorder, such systems are inherently complex. Therefore, we expect that the spatially defined organization of the active components in the present system provides new opportunities for studying the complicated photophysics intrinsic to blends of nanoscale systems, such as bulk heterojunctions by establishing simplified and better controlled interfaces.  相似文献   

11.
By using single molecule fluorescence spectroscopy we have investigated the excitation energy migration processes occurring in a series of cyclic porphyrin arrays bearing a close proximity in overall architectures to the LH2 complexes in purple bacterial photosynthetic systems. We have revealed that the conformational heterogeneity induced by the structural flexibility in large cyclic porphyrin arrays, which provides the nonradiative deactivation channels as an energy sink or trap, reduces significantly the energy migration efficiency. Our study provides detailed information on the energy migration efficiency of the artificial light-harvesting arrays at the single molecule level, which will be a guideline for future applications in single molecular photonic devices in the solid state.  相似文献   

12.
We present fluorescence-excitation spectra of individual light-harvesting 3 (LH3 or B800-820) complexes of Rhodopseudomonas acidophila at 1.2 K. The optical single-molecule studies were employed to investigate the electronic structure as well as the conformational flexibility of the individual pigment-protein complexes. The optical spectra resemble those of individual light-harvesting 2 (LH2) complexes, in agreement with the structural similarity of both types of complexes. Although variations among the LH3 spectra are large, there is a distinct difference in the spectral features of the 800 and 820 nm region that appears in all the complexes studied. In the B800 region 4-6 narrow bands are present whereas in the B820 region a limited number of relatively broad bands are observed. These observations can generally be interpreted in terms of localized excitations in the 800 nm region and delocalized excitations in the 820 nm region. The observed heterogeneous spectral behavior, especially in the B820 band, indicates that the B820 pigments of LH3 are sensitive to light-induced local conformational changes. It is suggested that a rotation of the C(3)-acetyl chain of a BChl a pigment bound to the beta-subunit of the light-harvesting complex is the origin of the conformational flexibility and affects the optical properties of the whole pigment-protein complex.  相似文献   

13.
We investigate the quantum dynamics of energy and charge transfer in a wheel-shaped artificial photosynthetic antenna-reaction center complex. This complex consists of six light-harvesting chromophores and an electron-acceptor fullerene. To describe quantum effects on a femtosecond time scale, we derive the set of exact non-Markovian equations for the Heisenberg operators of this photosynthetic complex in contact with a Gaussian heat bath. With these equations we can analyze the regime of strong system-bath interactions, where reorganization energies are of the order of the intersite exciton couplings. We show that the energy of the initially excited antenna chromophores is efficiently funneled to the porphyrin-fullerene reaction center, where a charge-separated state is set up in a few picoseconds, with a quantum yield of the order of 95%. In the single-exciton regime, with one antenna chromophore being initially excited, we observe quantum beatings of energy between two resonant antenna chromophores with a decoherence time of ~100 fs. We also analyze the double-exciton regime, when two porphyrin molecules involved in the reaction center are initially excited. In this regime we obtain pronounced quantum oscillations of the charge on the fullerene molecule with a decoherence time of about 20 fs (at liquid nitrogen temperatures). These results show a way to directly detect quantum effects in artificial photosynthetic systems.  相似文献   

14.
Photosystem II (PSII) is responsible for the water oxidation in photosynthesis and it consists of many proteins and pigment-protein complexes in a variable composition, depending on environmental conditions. Sunlight-induced charge separation lies at the basis of the photochemical reactions and it occurs in the reaction center (RC). The RC is located in the PSII core which also contains light-harvesting complexes CP43 and CP47. The PSII core of plants is surrounded by external light-harvesting complexes (lhcs) forming supercomplexes, which together with additional external lhcs, are located in the thylakoid membrane where they perform their functions. In this paper we provide an overview of the available information on the structure and organization of pigment-protein complexes in PSII and relate this to experimental and theoretical results on excitation energy transfer (EET) and charge separation (CS). This is done for different subcomplexes, supercomplexes, PSII membranes and thylakoid membranes. Differences in experimental and theoretical results are discussed and the question is addressed how results and models for individual complexes relate to the results on larger systems. It is shown that it is still very difficult to combine all available results into one comprehensive picture.  相似文献   

15.
Photosynthetic organisms utilize interacting pairs of chlorophylls and bacteriochlorophylls as excitation energy donors and acceptors in light harvesting complexes, as photosensitizers of charge separation in reaction centers, and maybe as photoprotective quenching centers that dissipate excess excitation energy under high light intensities. To better understand how the pigment's local environment and spatial organization within the protein tune its ground- and excited-state properties to perform different functions, we prepared and characterized the simplest possible system of interacting bacteriochlorophylls within a protein scaffold. Using HP7, a high-affinity heme-binding protein of the HP class of de novo designed four-helix bundles, we incorporated 13(2)-OH-zinc-bacteriochlorophyllide-a (ZnBChlide), a water-soluble bacteriochlorophyll derivative, into specific binding sites within the four-helix bundle protein core. We capitalized on the rich and informative optical spectrum of ZnBChlide to rigorously characterize its complexes with HP7 and two variants, in which a single heme-binding site is eliminated by replacing histidine residues at positions 7 or 42 by phenylalanine. Surprisingly, we found the ZnBChlide binding capacity of HP7 and its variants to be higher than for heme: up to three ZnBChlide pigments bind per HP7, or two per each single histidine variant. The formation of dimers within HP7 results in dramatic quenching of ZnBChlide fluorescence, reducing its quantum yield by about 80%, and the singlet excited-state lifetime by 2 orders of magnitudes compared to the monomer. Thus, HP7 and its variants are the first examples of a simple protein environment that can isolate a self-quenching pair of photosynthetic pigments in pure form. Unlike its complicated natural analogues, this system can be constructed from the ground up, starting with the simplest functional element, increasing the complexity as needed.  相似文献   

16.
Two distinct approaches, the Frenkel-Dirac time-dependent variation and the Haken-Strobl model, are adopted to study energy transfer dynamics in single-ring and double-ring light-harvesting (LH) systems in purple bacteria. It is found that the inclusion of long-range dipolar interactions in the two methods results in significant increase in intra- or inter-ring exciton transfer efficiency. The dependence of exciton transfer efficiency on trapping positions on single rings of LH2 (B850) and LH1 is similar to that in toy models with nearest-neighbor coupling only. However, owing to the symmetry breaking caused by the dimerization of BChls and dipolar couplings, such dependence has been largely suppressed. In the studies of coupled-ring systems, both methods reveal an interesting role of dipolar interactions in increasing energy transfer efficiency by introducing multiple intra/inter-ring transfer paths. Importantly, the time scale (4 ps) of inter-ring exciton transfer obtained from polaron dynamics is in good agreement with previous studies. In a double-ring LH2 system, non-nearest neighbor interactions can induce symmetry breaking, which leads to global and local minima of the average trapping time in the presence of a non-zero dephasing rate, suggesting that environment dephasing helps preserve quantum coherent energy transfer when the perfect circular symmetry in the hypothetic system is broken. This study reveals that dipolar coupling between chromophores may play an important role in the high energy transfer efficiency in the LH systems of purple bacteria and many other natural photosynthetic systems.  相似文献   

17.
Bacterial photosynthetic membrane proteins, light-harvesting antenna complex (LH1), reaction center (RC), and their combined ‘core’ complex (LH1–RC) are functional elements in the primary photosynthetic events, i.e., capturing and transferring light energy and subsequent charge separation. These photosynthetic units (PSUs) isolated from Rhodospirillum rubrum (Rs. rubrum) were assembled onto an ITO electrode modified with 3-aminopropyltriethoxysilane (APS–ITO). The near IR absorption spectra of PSUs on the assembled electrodes were identical to those of solutions, indicating that the LH1 and LH1–RC core complexes were native on the electrode. Photocurrent response of PSUs on the electrode was examined upon illumination of the LH1 complex at 880 nm. The LH1–RC and a mixed assembly of LH1 and RC exhibited photocurrent response, but not LH1 only, consistent with the function of these PSUs, capturing light energy and transferring electron. This result provides useful methodology for building an artificial fabrication of PSUs on the electrode.  相似文献   

18.
The precision placement of the desired protein components on a suitable substrate is an essential prelude to any hybrid "biochip" device, but a second and equally important condition must also be met: the retention of full biological activity. Here we demonstrate the selective binding of an optically active membrane protein, the light-harvesting LH2 complex from Rhodobacter sphaeroides, to patterned self-assembled monolayers at the micron scale and the fabrication of nanometer-scale patterns of these molecules using near-field photolithographic methods. In contrast to plasma proteins, which are reversibly adsorbed on many surfaces, the LH2 complex is readily patterned simply by spatial control of surface polarity. Near-field photolithography has yielded rows of light-harvesting complexes only 98 nm wide. Retention of the native optical properties of patterned LH2 molecules was demonstrated using in situ fluorescence emission spectroscopy.  相似文献   

19.
Natural photosynthesis relies on light harvesting and excitation energy transfer by specialized pigment–protein complexes. Their structure and the electronic properties of the embedded chromophores define the mechanisms of energy transfer. An important example of a pigment–protein complex is CP47, one of the integral antennae of the oxygen-evolving photosystem II (PSII) that is responsible for efficient excitation energy transfer to the PSII reaction center. The charge-transfer excitation induced among coupled reaction center chromophores resolves into charge separation that initiates the electron transfer cascade driving oxygenic photosynthesis. Mapping the distribution of site energies among the 16 chlorophyll molecules of CP47 is essential for understanding excitation energy transfer and overall antenna function. In this work, we demonstrate a multiscale quantum mechanics/molecular mechanics (QM/MM) approach utilizing full time-dependent density functional theory with modern range-separated functionals to compute for the first time the excitation energies of all CP47 chlorophylls in a complete membrane-embedded cyanobacterial PSII dimer. The results quantify the electrostatic effect of the protein on the site energies of CP47 chlorophylls, providing a high-level quantum chemical excitation profile of CP47 within a complete computational model of “near-native” cyanobacterial PSII. The ranking of site energies and the identity of the most red-shifted chlorophylls (B3, followed by B1) differ from previous hypotheses in the literature and provide an alternative basis for evaluating past approaches and semiempirically fitted sets. Given that a lot of experimental studies on CP47 and other light-harvesting complexes utilize extracted samples, we employ molecular dynamics simulations of isolated CP47 to identify which parts of the polypeptide are most destabilized and which pigments are most perturbed when the antenna complex is extracted from PSII. We demonstrate that large parts of the isolated complex rapidly refold to non-native conformations and that certain pigments (such as chlorophyll B1 and β-carotene h1) are so destabilized that they are probably lost upon extraction of CP47 from PSII. The results suggest that the properties of isolated CP47 are not representative of the native complexed antenna. The insights obtained from CP47 are generalizable, with important implications for the information content of experimental studies on biological light-harvesting antenna systems.

Advanced QM/MM simulations explore the excited states of a photosynthetic light-harvesting antenna in its physiologically complexed state and model the consequences of extraction on conformational and electronic properties.  相似文献   

20.
A unique method is described for directly observing the lateral organization of a membrane protein (bacterial light-harvesting complex LH2) in a supported lipid bilayer using total internal reflection fluorescence (TIRF) microscopy. The supported lipid bilayer consisted of anionic 1,2-dioleoyl-sn-glycero-3-[phospho-rac-(1'-glycerol)] (DOPG) and 1,2-distearoly-sn-3-[phospho-rac-(1'-glycerol)] (DSPG) and was formed through the rupture of a giant vesicle on a positively charged coverslip. TIRF microscopy revealed that the bilayer was composed of phase-separated domains. When a suspension of cationic phospholipid (1,2-dioleoyl-sn-glycero-3-ethylphosphocholine: EDOPC) vesicles (approximately 400 nm in diameter), containing LH2 complexes (EDOPC/LH2 = 1000/1), was put into contact with the supported lipid bilayer, the cationic vesicles immediately began to fuse and did so specifically with the fluid phase (DOPG-rich domain) of the supported bilayer. Fluorescence from the incorporated LH2 complexes gradually (over approximately 20 min) spread from the domain boundary into the gel domain (DSPG-rich domain). Similar diffusion into the domain-structured supported lipid membrane was observed when the fluorescent lipid (1,2-dioleoyl-sn-glycero-3-phosphoethanolamine-N-lissamine-rhodamine B sulfonyl: N-Rh-DOPE) was incorporated into the vesicles instead of LH2. These results indicate that vesicles containing LH2 and lipids preferentially fuse with the fluid domain, after which they laterally diffuse into the gel domain. This report describes for first time the lateral organization of a membrane protein, LH2, via vesicle fusion and subsequent lateral diffusion of the LH2 from the fluid to the gel domains in the supported lipid bilayer. The biological implications and applications of the present study are briefly discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号