首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 531 毫秒
1.
Stereochemically pure phosphines with phosphorus-heteroatom bonds and P-centered chirality are a promising class of functional building blocks for the design of chiral ligands and organocatalysts. A route to enantiomerically pure primary aminophosphine sulfides was opened through stereospecific reductive C−N bond cleavage of phosphorus(V) precursors by lithium in liquid ammonia. The chemoselectivity of the reaction as a function of reaction time, substrate pattern, and chiral auxiliary was investigated. In the presence of exclusively aliphatic groups bound to the phosphorus atom, all competing reductive side reactions are totally prevented. The absolute configurations of all P-stereogenic compounds were determined by single-crystal X-ray diffraction analysis. Their use as synthetic building blocks was demonstrated. The lithium salt of (R)-BINOL-dithiophosphoric acid proved to be a useful stereochemical probe to determine the enantiomeric purity. Insights into the coordination mode of the lithium-based chiral complex formed in solution was provided by NMR spectroscopy and DFT calculations.  相似文献   

2.
Chiral structures created through the adsorption of molecules onto achiral surfaces play pivotal roles in many fields of science and engineering. Here, we present a systematic study of a novel chiral phenomenon on a surface in terms of organizational chirality, that is, meso‐isomerism, through coverage‐driven hierarchical polymorphic transitions of supramolecular assemblies of highly symmetric π‐conjugated molecules. Four coverage‐dependent phases of dehydrobenzo[12]annulene were uniformly fabricated on Ag(111), exhibiting unique chiral characteristics from the single‐molecule level to two‐dimensional supramolecular assemblies. All coverage‐driven phase transitions stem from adsorption‐induced pseudo‐diastereomerism, and our observation of a lemniscate‐type (∞) supramolecular configuration clearly reveals a drastic chiral phase transition from an enantiomeric chiral domain to a meso‐isomeric achiral domain. These findings provide new insights into controlling two‐dimensional chiral architectures on surfaces.  相似文献   

3.
Adsorption structures formed from a class of planar organic molecules on the Au(111) surface under ultrahigh vacuum conditions have been characterized using scanning tunneling microscopy (STM). The molecules have different geometries, linear, bent, or three-spoke, but all consist of a conjugated aromatic backbone formed from three or four benzene rings connected by ethynylene spokes and functionalized at all ends with an aldehyde, a hydroxyl, and a bulky tert-butyl group. Upon adsorption, the molecules adopt different surface conformations some of which are chiral. For the majority of the observed adsorption structures, chirality is expressed also in the molecular tiling pattern, and the two levels of chirality display a high degree of correlation. The formation and chiral ordering of the self-assembled structures are shown to result from dynamic interchanges between a diffusing lattice gas and the nucleated islands, as well as from a chiral switching process in which molecules alter their conformation by an intramolecular rotation around a molecular spoke, enabling them to accommodate to the tiling pattern of the surrounding molecular structures. The kinetics of the conformational switching is investigated from time-resolved, variable temperature STM, showing the process to involve an activation energy of approximately 0.3 eV depending on the local molecular environment. The molecule-molecule interactions appear primarily to be of van der Waals character, despite the investigated compounds having functional moieties capable of forming intermolecular hydrogen bonds.  相似文献   

4.
Indirect adsorbate-adsorbate interactions between adsorbed ammonia (NH3) molecules on the Si(100) surface are investigated using density functional theory. Two different nonlocal effects mediated through the surface electronic structure are observed: "poisoning" and hydrogen bonding. We find that adsorbed NH3 "poisons" adsorption of NH3 on neighboring Si dimers on the same side of the dimer row whereas neighboring NH2(a) groups favor this configuration. Adsorption of NH3 involves charge transfer to the surface that localizes on neighboring Si dimer atoms, preventing adsorption of NH3 at these sites. These indirect interactions are similar to Friedel-type interactions observed on metal surfaces with an estimated range of less than 7.8 A on the Si(100) surface. These interactions may be manipulated to construct local ordering of the adsorbates on the surface.  相似文献   

5.
Self-assembly of the partially fluorinated rigid molecules physisorbed at solution/graphite interface has been investigated by scanning tunneling microscopy. Upon adsorption, both the branched star-shaped compound 1 and the angulate rod 2 compromising diacetylene and acetylene interlinked benzene and pentafluorobezene formed two-dimensional chiral porous networks. The spontaneous formation of these architectures is likely attributed to the two effects: the compensation of the dipole moments of the branches and the formation of Ar-H...F hydrogen bonds. These results demonstrate that the immobilization of molecules at the liquid/solid interface can be driven by these weak intermolecular interactions instead of van der Waals interactions between alkyl chains and substrate.  相似文献   

6.
The monolayer (ML) and submonolayer Pt on both terminations of PbTiO3(110) polar surface have been studied by using density functional theory (DFT) with projector‐augmented wave(PAW) potential and a supercell approach. The most favored ML Pt arrangements on PbTiO and O2 terminations are the hollow site and the short‐bridge site, respectively. By examining the geometries of different ML arrangements, we know that the dominant impetus for stability of the favored adsorption site for PbTiO termination is the Pt–Ti interaction (mainly from covalent bonding), while that for O2 termination is the Pt–O interaction (mainly from ionic bonding). In addition, the appearance of the gap electronic states in the outermost layers of each termination indicates that a channel for charge transfer between adsorbed layer and substrate is formed. Moreover, the interface hybridization between Pt 5d and O 2p orbitals is also observed, especially for ML Pt on O2 termination. The stability sequences for various arrangements of 1/2 ML Pt adsorption conform well with those of ML Pt adsorption, and the most stable arrangement is energetically more favorable than the corresponding ML coverage in the view of adsorption energy maximization. The behavior, i.e. the increase in adsorption energy with decrease in coverage, indicates that Pt? Pt interactions weaken those between Pt and the substrate. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

7.
A novel one-dimensional manganese(Ⅱ) complex containing nitronyl nitroxide radical [Mn2(IM2-py)2(Ac)2((μ1.1-N3)(μ1,3-N3) . EtOH]n was synthesized and characterized structurally and magnetically. It crystallizes in the monoclinic space group p21/n. Each Mn(Ⅱ) ion is six-coordinated in a distorted octahedral environment. The two N atoms of the nitronyl nitroxide radical and the two O atoms of acetate ligands are in the equatorial plane, whereas the two different azido bridging ligands are in trans axial position. Mn(Ⅱ) ions are linked by nitrogen atom of μ1,1-azido and oxygen atoms of two carboxy groups to form a Mn-Mn unit. Mn-Mn units are linked by azido ligands through u1,3 bridging style to form a one-dimensional chain. The compound is connected by the coordination bonds,π-π interactions and hydrogen bonds as a three-dimensional structure. Magnetic susceptibility data support that there are stronger antiferromagnetic interactions between the radical and Mn(Ⅱ) ion, weak antiferromagnetic inter  相似文献   

8.
We describe the enantiomeric and enantiotopic analysis of the NMR spectra of compounds derived from the functionalized cone-shaped core, cyclotriveratrylenes (CTV), dissolved in weakly oriented lyotropic chiral liquid crystals (CLCs) based on organic solutions of poly-gamma-benzyl-L-glutamate. The CTV core lacks prostereogenic as well as stereogenic tetrahedral centers. However, depending on the pattern of substitution, chiral and achiral compounds with different symmetries can be obtained. Thus, symmetrically nonasubstituted CTVs (C(3) symmetry) are optically active and exhibit enantiomeric isomers, while symmetrically hexasubstituted (C(3v) symmetry) derivatives are prochiral and possess enantiotopic elements. In the first part we use (2)H and (13)C NMR to study two nonasubstituted (-OH or -OCH(3)) CTVs, where the ring methylenes are fully deuterated, and show for the first time that the observation of enantiomeric discrimination of chiral molecules with a 3-fold symmetry axis is possible in a CLC. It is argued that this discrimination reflects different orientational ordering of the M and P isomers, rather than specific chiral short-range solvent-solute interactions that may affect differently the magnetic parameters of the enantiomers or even their geometry. In the second part we present similar measurements on hexasubstituted CTV with flexible side groups (-OC(O)CH(3) and the, partially deuterated bidentate, -OCH(2)CH(2)O-), having on the average C(3v) symmetry. No spectral discrimination of enantiotopic sites was detected for the -OC(O)CH(3) derivative. This is consistent with a recent theoretical work (J. Chem. Phys. 1999, 111, 6890) that indicates that in C(3v) molecules no chiral discrimination between enantiotopic elements, based on ordering, is possible. In contrast, a clear splitting was observed in the (2)H spectra of the enantiotopic deuterons of the side groups in the tri(dioxyethylene)-CTV. It is argued that this discrimination reflects different ordering characteristics of the various, rapidly (on the NMR time scale) interconverting conformers of this compound. Assuming two twisted structures for each of the dioxyethylene side groups, four different conformers are expected, comprising two sets of enantiomeric pairs with, respectively, C(3) and C(1) symmetries. Differential ordering and/or fractional population imbalance of these enantiomeric pairs leads to the observed spectral discrimination of sites in the side chains that on average form enantiotopic pairs.  相似文献   

9.
The formation of 2D surface‐confined supramolecular porous networks is scientifically and technologically appealing, notably for hosting guest species and confinement phenomena. In this study, we report a scanning tunneling microscopy (STM) study of the self‐assembly of a tripod molecule specifically equipped with pyridyl functional groups to steer a simultaneous expression of lateral pyridyl–pyridyl interactions and Cu–pyridyl coordination bonds. The assembly protocols yield a new class of porous open assemblies, the formation of which is driven by multiple interactions. The tripod forms a purely porous organic network on Ag(111), phase α, in which the presence of the pyridyl groups is crucial for porosity, as confirmed by molecular dynamics and Monte Carlo simulations. Additional deposition of Cu dramatically alters this scenario. For submonolayer coverage, three different porous phases coexist (i.e., β, γ, and δ). Phases β and γ are chiral and exhibit a simultaneous expression of lateral pyridyl–pyridyl interactions and twofold Cu–pyridyl linkages, whereas phase δ is just stabilized by twofold Cu–pyridyl bonds. An increase in the lateral molecular coverage results in a rise in molecular pressure, which leads to the formation of a new porous phase (ε), only coexisting with phase α and stabilized by a simultaneous expression of lateral pyridyl–pyridyl interactions and threefold Cu–pyridyl bonds. Our results will open new avenues to create complex porous networks on surfaces by exploiting components specifically designed for molecular recognition through multiple interactions.  相似文献   

10.
The current study employs hybrid-exchange density functional theory to investigate the adsorption of HF and HCl to under-coordinated Al ions on the beta-AlF(3) (100) surface. It is shown that the geometries of the adsorbates are strongly dependent on coverage. Furthermore, the adsorption of HCl leads to a number of distinct structures that have very similar energies. It is proposed that this result may explain the high catalytic activity of aluminium fluoride and aluminium chloro-fluoride surfaces towards chlorine-fluorine exchange reactions. The stretching and bending frequencies of the H-F and H-Cl bonds at half and full monolayer coverage are also calculated and the vibrational spectrum is found to be strongly dependent on the adsorption site and the coverage. The vibrational frequency shifts provide, therefore, a mechanism for experimentally characterising these surfaces.  相似文献   

11.
HPLC enantiomeric separations of a wide variety of racemic analytes was evaluated using chiral stationary phases (CSPs) based on the macrocyclic glycopeptides teicoplanin (T), teicoplanin aglycone (TAG), and methylated teicoplanin aglycone (Me-TAG) in two different mobile phase modes, i.e., the RP mode and the polar organic (PO) mode. Comparison of the enantiomeric separations using Chirobiotic T, Chirobiotic TAG, and the methylated form of TAG were conducted in order to gain a better understanding of the roles of the polar functional groups on the CSP. Substantial effects due to the cleavage of saccharides and/or methylation on chiral separations were observed in both separation modes. Improved separation efficiencies for many acidic analytes were obtained by methylating the H-bonding groups of TAG. These groups were believed to be a contributing factor to band broadening on TAG due to their negative effect on mass transfer between the stationary phase and mobile phase. Ionic/dipolar interactions between the carboxylate group of the analytes and the amine groups on T, TAG, or Me-TAG are important for chiral discrimination. Therefore, analytes possessing a carboxyl group are good candidates for successful separations on these CSPs. Hydrophobic interactions are important for enantiomeric separations in the RP mode where the H-bonding interactions between analytes and the chiral selectors are relatively weak. Me-TAG offers higher hydrophobicity, which can accentuate the interactions of analytes with hydrophobic moieties, but these interactions are not necessarily stereoselective. In the PO mobile phase, electrostatic/dipolar interactions between polar functional groups are the dominating interactions in chiral recognition. Another important factor is steric fit, which could be changed with every modification of the T structure. Therefore, substantial changes of enantioseparations were obtained within this studied group of CSPs. The PO mode was shown to be the most powerful mobile phase mode for enantiomeric separations on T-based stationary phases, mainly due to the improved efficiency. Methylation of the TAG proved to be a very useful tool for investigating the chiral recognition mechanism for this group of chiral selectors.  相似文献   

12.
Cytochrome P450 (CYP) 3A4 is responsible for the oxidative degradation of more than 50% of clinically used drugs. By means of molecular dynamics simulations with the newly developed force field parameters for the heme-thiolate group and its dioxygen adduct, we examine the differences in structural and dynamic properties between CYP3A4 in the resting form and its complexes with the substrate progesterone and the inhibitor metyrapone. The results indicate that the broad substrate specificity of CYP3A4 stems from the malleability of a loop (residues 211-218) that resides in the vicinity of the channel connecting the active site and bulk solvent. However, the high-amplitude motion of the flexible loop is found to be damped out upon binding of the inhibitor or the substrate in the active site. In the resting form of CYP3A4, a structural water molecule is bound to the sixth coordination position of the heme iron, stabilizing the octahedral coordination geometry. In addition to the direct coordination of metyrapone to the heme iron, the hydrogen bond interaction between the inhibitor carbonyl group and the side chain of Ser119 also contributes significantly to stabilizing the CYP3A4-metyrapone complex. On the other hand, progesterone is stabilized in the active site by the formation of two hydrogen bonds with Ser119 and Arg106, as well as by the van der Waals interactions with the heme and hydrophobic residues. The structural and dynamic features of the CYP3A4-progesterone complex indicate that the oxidative degradation of progesterone occurs through hydroxylation at the C16 position by the reactive oxygen coordinated to the heme iron.  相似文献   

13.
Vanadium monomers with chiral tridentate Schiff-base ligands were supported on SiO(2) through a chemical reaction with surface silanols, where we found a new chirality creation by the self-dimerization of the vanadyl complexes on the surface. The chiral self-dimerization and the role of surface silanols in the self-assembly were investigated by means of X-ray absorption near-edge structure (XANES), extended X-ray absorption fine structure (EXAFS), diffuse-reflectance ultraviolet/visible (DR-UV/VIS), X-ray photoelectron spectroscopy (XPS), Fourier transform infrared (FT-IR), electron spin resonance (ESR), and density functional theory (DFT) calculations. The surface vanadyl complexes had a distorted square-pyramidal conformation with a V=O bond. FT-IR spectra revealed that the Ph-O moiety of Schiff-base ligands was converted to Ph-OH by a surface-concerted reaction between the vanadium precursors and surface SiOH groups. The Ph-OH in an attached vanadyl complex interacted with a COO moiety of another vanadyl complex by hydrogen bonding to form a self-dimerized structure at the surface. The interatomic distance of V-V in the surface self-assembly was evaluated to be 0.40 +/- 0.05 nm by ESR after O(2) adsorption. The self-dimerized V structure on SiO(2) was modeled by DFT calculations, which demonstrated that two vanadium monomers with Ph-OH linked together by two hydrogen bonds and their V=O groups were directed opposite to each other. The surface self-dimerization of the vanadium precursors fixes the direction of the V=O bond and the plane of the Schiff-base ligand. Thus, a new chiral reaction field was created by two types of chirality: the chiral Schiff-base ligand and the chiral V center. We have also found that the chiral self-dimerized vanadyl complexes exhibit remarkable catalytic performance for the asymmetric oxidative coupling of 2-naphthol: 96% conversion, 100% selectivity to 1,1'-binaphthol (BINOL), and 90% enantiomeric excess (ee). Increasing the vanadium loading on SiO(2) caused a dramatic swell of enantioselectivity, and the maximum 90% ee was observed on the supported catalyst with the full coverage of the vanadyl complex (3.4 wt % vanadium). This value is equivalent to the maximum ee reported in homogeneous catalysis for the coupling reaction. Furthermore, the supported vanadium dimers were reusable without loss of the catalytic performance. To our knowledge, this is the first heterogeneous catalyst for the asymmetric oxidative coupling of 2-naphthol.  相似文献   

14.
Choi da H  Yoon JH  Lim JH  Kim HC  Hong CS 《Inorganic chemistry》2006,45(15):5947-5952
Two mononuclear complexes [Mn(5-methylpyrazole)4(N3)2] (1) and [Ni(5-methylpyrazole)4(N3)2] (2), as well as a novel one-dimensional coordination polymer [Co(3-methylpyrazole)2(5-methylpyrazole)2(tp)]n (3) (tp = terephthalate), were characterized. The isostructural complexes, 1 and 2, display two-dimensional supramolecular networks formed by hydrogen bonds between the N-H groups of 5-methylpyrazoles and the end N atoms of the azide ligands and additional face-to-face pi-pi interactions of the 5-methylpyrazoles. For 3, tp-bridged one-dimensional chains assisted by intrachain hydrogen bonds among the N-H groups of methylpyrazoles and carboxylate oxygens are connected with the help of interchain C-H...O hydrogen bonds, leading to a two-dimensional structure. The intra- and interchain hydrogen bonds account for the coexistence of two unique coordination forms (5-methylpyrazole and 3-methylpyrazole) of methylpyrazoles in the same coordination sphere. Weak antiferromagnetic interactions coupled with the spin-orbit coupling effect are operative in 3 through the tp ligands.  相似文献   

15.
A novel chiral coordination polymer, [Cu(C(6)H(5)CH(OH)COO)(μ-C(6)H(5)CH(OH)COO)] (1-L and 1-D), was synthesized through a reaction of copper acetate with L-mandelic acid at room temperature. Although previously reported copper mandelate prepared by hydrothermal reaction was a centrosymmetric coordination polymer because of the racemization of mandelic acid, the current coordination polymer shows noncentrosymmetry and a completely different structure from that previously reported. The X-ray crystallography for 1-L revealed that the copper center of the compound showed a highly distorted octahedral structure bridged by a chiral mandelate ligand in the unusual coordination mode to construct a one-dimensional (1D) zigzag chain structure. These 1D chains interdigitated each other to give a layered structure as a result of the formation of multiple aromatic interactions and hydrogen bonds between hydroxyl and carboxylate moieties at mandelate ligands. The coordination polymer 1-L belongs to the noncentrosymmetric space group of C2 to show piezoelectric properties and second harmonic generation (SHG) activity.  相似文献   

16.
A series of phosphorus compounds (1-3) containing anionic carboxylate groups were synthesized by treatment of the respective neutral precursor acid forms B-D with amines, which also served to introduce hydrogen-bonding interactions. The compounds, subjected to X-ray structure analysis, resulted in hexacoordinated anionic phosphoranates 1A and 1B, a pseudo-trigonal-bipyramidal anionic phosphine (2), and a trigonal-bipyramidal anionic phosphine oxide (3). The structures revealed that P-O donor coordination was present in all members of the anionic series 1-3 and resulted in stronger interactions than existed in the precursor neutral acid forms B-D as measured by the presence of shorter P-O distances. Evaluation of the energies of the donor interactions relative to the energies of the hydrogen bonds that were present showed that the donor energies now exceeded the hydrogen bond strengths. (31)P chemical shifts indicated that the basic coordination geometries were retained in solution. Both 1A and 1B are chiral and exist as racemates. The results suggest that mechanisms of phosphoryl-transfer enzymes should benefit by taking into account donor interactions at phosphorus by residues at active sites in addition to the inclusion of hydrogen bonding. Reference is made to specific phosphoryl-transfer enzymes.  相似文献   

17.
The present work pursued a possibility that enantioselectivity was achieved through weak intermolecular interactions between a catalyst and a substrate. For that purpose, we studied the photooxidation of alpha-ethylbenzyl phenyl sulfide catalyzed by a polypyridyl ruthenium(II) complex as a chiral photosensitizer. No covalent bonding was formed between a catalyst and a substrate, because the complexes used ([Ru(phen)(3)](2+) or [Ru(bpy(3))(2+)]) were coordinatively saturated. Enantiomer excess (ee) was attained to be 30% when a chiral photosensitizer was immobilized on montmorillonite clay. It was even improved to 43% in the presence of an additional chiral auxiliary, dibenzoyl-D(+)-tartaric acid. Notably, no enantioselectivity was achieved when the reaction took place in homogeneous solutions. The ab initio calculations were performed on the stability of an associate composed of a catalyst (metal complex) and a product (sulfoxide) to obtain a clue to reaction mechanisms. The calculations suggest that chiral discrimination is achieved even through noncovalent interactions between a substrate and a chiral sensitizer when the attacking direction by a substrate toward a catalyst is limited sterically on a solid surface.  相似文献   

18.
A soluble and stable one-handed helical poly(substituted phenylacetylene) without the coexistence of any other chiral moieties was successfully synthesized by asymmetric-induced polymerization of a chiral monomer followed by two-step polymer reactions in membrane state: (1) removing the chiral groups (desubstitution); and (2) introduction of achiral long alkyl groups at the same position as the desubstitution to enhance the solubility of the resulting one-handed helical polymer (resubstitution). The starting chiral monomer should have four characteristic substituents: (i) a chiral group bonded to an easily hydrolyzed spacer group; (ii) two hydroxyl groups; (iii) a long rigid hydrophobic spacer between the chiral group and the polymerizing group; (iv) a long achiral group near the chiral group. As spacer group a carbonate ester was selected. The two hydroxyl groups formed intramolecular hydrogen bonds stabilizing a one-handed helical structure in solution before and after the two-step polymer reactions in membrane state. The rigid long hydrophobic spacer, a phenylethynylphenyl group, enhanced the solubility of the starting polymer, and realized effective chiral induction from the chiral side groups to the main chain in the asymmetric-induced polymerization. The long alkyl group near the chiral group avoided shrinkage of the membrane and kept the reactivity of resubstitution in membrane state after removing the chiral groups. The g value (g = ([θ]/3,300)/ε) for the CD signal assigned to the main chain in the obtained final polymer was almost the same as that of the starting polymer in spite of the absence of any other chiral moieties. Moreover, since the one-handed helical structure was maintained by the intramolecular hydrogen bonds in a solution, direct observation of the one-handed helicity of the final homopolymer has been realized in CD for the solution for the first time.  相似文献   

19.
For three-dimensional coding (including enantiomerism) of staggered paths and circuits on the diamond lattice, or paths/circuits with angles 90 degrees or 180 degrees on the cubic lattice, use is made of the previously defined paths-3 (paths of length three bonds defining two intersecting planes). The two cases mentioned above are examined and exemplified. In the diamond lattice there are three kinds of diamond-paths-3: one is achiral (Z) and two are chiral and enantiomeric (R and S). In the cubic lattice there are six kinds of orthopaths-3, of which only two are chiral and enantiomeric (R and S) and four are achiral (I, L, U, and Z). The chiral paths-3 are the previously defined protochirons in the respective lattice. Coding ascribes to each bond the letter that would characterize it if it were the central bond of an isolated path-3. To obtain a unique code out of several equally correct ones it is proposed to use the convention of inverse alphabetic priority in the above system of letters.  相似文献   

20.
Inverting the reactivity of the functional groups in ambiphilic molecules provides a new synthetic strategy to perform late‐stage enantiodivergence. Both enantiomers of the final compound can be obtained from a common chiral precursor. As a proof of concept, the synthesis of substituted five‐ and six‐membered oxacycles is described. The key step is the cyclization of an ambiphilic linear precursor bearing a propargylic alcohol and an epoxide linked through an alkyl chain. Through a slight modification of these linear precursors and employing different reaction conditions, these functional groups can inverse their chemical reactivity, producing one enantiomer or another of the final product. This enantiodivergent cyclization involves three stereogenic centers that can undergo fully controlled retention or inversion of their configuration depending on the cyclization pathway that is activated. The cyclization provides late‐stage enantiodivergence, enabling the synthesis of either enantiomers of the oxacycles from a common chiral substrate with total transfer of the enantiomeric purity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号