首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The bond dissociation energy (D(0)) of the water dimer is determined by using state-to-state vibrational predissociation measurements following excitation of the bound OH stretch fundamental of the donor unit of the dimer. Velocity map imaging and resonance-enhanced multiphoton ionization (REMPI) are used to determine pair-correlated product velocity and translational energy distributions. H(2)O fragments are detected in the ground vibrational (000) and the first excited bending (010) states by 2 + 1 REMPI via the C? (1)B(1) (000) ← X? (1)A(1) (000 and 010) transitions. The fragments' velocity and center-of-mass translational energy distributions are determined from images of selected rovibrational levels of H(2)O. An accurate value for D(0) is obtained by fitting both the structure in the images and the maximum velocity of the fragments. This value, D(0) = 1105 ± 10 cm(-1) (13.2 ± 0.12 kJ/mol), is in excellent agreement with the recent theoretical value of D(0) = 1103 ± 4 cm(-1) (13.2 ± 0.05 kJ∕mol) suggested as a benchmark by Shank et al. [J. Chem. Phys. 130, 144314 (2009)].  相似文献   

2.
The various dissociation thresholds of phenol(+)···Ar(3) complexes for the consecutive loss of all three Ar ligands were measured in a molecular beam using resonant photoionization efficiency and mass analyzed threshold ionization spectroscopy via excitation of the first excited singlet state (S(1)). The adiabatic ionization energy is derived as 68077 ± 15 cm(-1). The analysis of the dissociation thresholds demonstrate that all three Ar ligands in the neutral phenol···Ar(3) tetramer are attached to the aromatic ring via π-bonding, denoted phenol···Ar(3)(3π). The value of the dissociation threshold for the loss of one Ar ligand from phenol(+)···Ar(3)(3π), ~190 cm(-1), is significantly lower than the binding energy measured for the π-bonded Ar ligand in the phenol(+)···Ar(π) dimer, D(0) = 535 ± 3 cm(-1). This difference is rationalized by an ionization-induced π → H isomerization process occurring prior to dissociation, that is, one Ar atom in phenol(+)···Ar(3)(3π) moves to the OH binding site, leading to a structure with one H-bonded and 2 π-bonded ligands, denoted phenol(+)···Ar(3)(H/2π). The dissociation thresholds for the loss of two and three Ar atoms are also reported as 860 and 1730 cm(-1). From these values, the binding energy of the H-bound Ar atom can be estimated as 870 cm(-1).  相似文献   

3.
Density functional theory with B3LYP parametrization and 6-311++G(d,p) basis set has been used to investigate the structure and stability of salicylic acid-water complexes. The vertical excitation energies for these complexes have been computed using time-dependent density functional theory (with B3LYP parametrization and a 6-311++G(d,p) basis set). It is shown that the hydrogen bond between the carboxylic hydrogen and the oxygen of water is the strongest among all possible hydrogen bonds in the system. The hydrogen bond strength in salicylic acid-water complexes seems to be nearly additive. The change in absorption maximum (lambda(max)) corresponding to the vertical excitation energy for the first three excited singlet and triplet states of the complex with 1-3 water molecules is nominal (approximately 1-3 nm). But with the addition of the fourth water molecule, the lambda(max) for S(1) and T(1) decreases by approximately 17 nm and it increases for S(2) and S(3) by about the same amount. The decrease in lambda(max) for transition to the T(2) state on the addition of the fourth water molecule is only approximately 9 nm. There seems to be an intersystem crossing between the S(1) and T(3) states that could account for the observed fluorescence quenching of salicylic acid in water.  相似文献   

4.
用ab initio分子轨道法在STO-3G和6-31G水平上, 全构型优化, 对二聚乙醛的各种稳定构型进行了研究。结果表明, 在STO/6-31G水平上, 最稳定的乙醛二聚体为具有对称中心的环状结构, 包含由醛基氢和醛基氧组成的二个C—H…O氢键。结合能为-20.17 kJ·mol~(-1), 与实验估计的结合能-22.39±0.15 kJ·mol~(-1)比较接近。STO-3G过低估计了乙醛二聚体的结合能, 在不同构型的相对稳定性方面也与6-31G不一致。  相似文献   

5.
We report velocity map imaging measurements of the binding energies, D(0), of NO-Rg (Rg = He, Ne, Ar) complexes. The X state binding energies determined are 3.0 ± 1.8, 28.6 ± 1.7, and 93.5 ± 0.9 cm(-1) for NO-He, -Ne, and -Ar, respectively. These values compare reasonably well with ab initio calculations. Because the ?-X transitions were unable to be observed for NO-He and NO-Ne, values for the binding energies in the ? state of these complexes have not been determined. Based on our X state value and the reported ?-X origin band position, the ? state binding energy for NO-Ar was determined to be 50.6 ± 0.9 cm(-1).  相似文献   

6.
The structures of acetic acid (AA), trifluoroacetic acid (TFA), and their aqueous mixtures over the entire range of acid mole fraction xA have been investigated by using large-angle X-ray scattering (LAXS) and NMR techniques. The results from the LAXS experiments have shown that acetic acid molecules mainly form a chain structure via hydrogen bonding in the pure liquid. In acetic acid-water mixtures hydrogen bonds of acetic acid-water and water-water gradually increase with decreasing xA, while the chain structure of acetic acid molecules is moderately ruptured. Hydrogen bonds among water molecules are remarkably formed in acetic acid-water mixtures at xA相似文献   

7.
Experiments using infrared excitation of either the intramolecular symmetric N-H stretch (ν(NH,S)) or the intramolecular antisymmetric N-H stretch (ν(NH,A)) of the ammonia dimer ((NH(3))(2)) in combination with velocity-map ion imaging provide new information on the dissociation energy of the dimer and on the energy disposal in its dissociation. Ion imaging using resonance enhanced multiphoton ionization to probe individual rovibrational states of one of the ammonia monomer fragments provides recoil speed distributions. Analyzing these distributions for different product states gives a dissociation energy of D(0) = 660 ± 20 cm(-1) for the dimer. Fitting the distributions shows that rotations are excited up to their energetic limit and determines the correlation of the fragment vibrations. The fragments NH(3)(ν(2) = 3(+)) and NH(3)(ν(2) = 2(+)) have a vibrational ground-state partner NH(3)(ν = 0), but NH(3)(ν(2) = 1(+)) appears in partnership with another fragment in ν(2) = 1. This propensity is consistent with the idea of minimizing the momentum gap between the initial and final states by depositing a substantial fraction of the available energy into internal excitation.  相似文献   

8.
合成了 4 ,4′ 二羧酸 1 ,6 二酚氧基正己烷 ,与等摩尔的 4 ,4′ 联吡啶采用缓慢挥发溶剂的方法组装 ,所得复合体系经DSC分析和偏光显微镜观察表明形成了超分子液晶 ,红外光谱证实了羧基与吡啶基之间氢键的形成  相似文献   

9.
The ground-state properties of the monomer and the dimer of formic acid, acetic acid, and benzoic acid have been investigated using Hartree-Fock (HF) and density functional theory (DFT) methods using the 6-311++G(d,p) basis set. Some of the low-lying excited states have been studied using the time-dependent density functional theory (TDDFT) with LDA and B3LYP functionals and also employing complete-active-space-self-consistent-field (CASSCF) and multireference configuration interaction (MRCI) methodologies. DFT calculations predict the ground-state geometries in quantitative agreement with the available experimental results. The computed binding energies for the three carboxylic acid dimers are also in accord with the known thermodynamic data. The TDDFT predicted wavelengths corresponding to the lowest energy n-pi* transition in formic acid (214 nm) and acetic acid (214 nm) and the pi-pi* transition in benzoic acid (255 nm) are comparable to the experimentally observed absorption maxima. In addition, TDDFT calculations predict qualitatively correctly the blue shift (4-5 nm) in the excitation energy for the pi-pi* transition in going from the monomer to the dimer of formic acid and acetic acid and the red shift (approximately 19 nm) in pi-pi* transition in going from benzoic acid monomer to dimer. This also indicates that the electronic interaction arising from the hydrogen bonds between the monomers is marginal in all three carboxylic acids investigated.  相似文献   

10.
Dimerization of the keto tautomer of acetohydroxamic acid has been studied using FTIR matrix isolation spectroscopy and DFT(B3LYP)/6-31+G(d,p) calculations. Analysis of CH3CONHOH/Ar matrix spectra indicates formation of two dimers in which two intramolecular CO...HON bonds within two interacting acetohydroxamic acid molecules are retained. A chain dimer I is stabilized by the intermolecular CO...HN hydrogen bond, whereas the cyclic dimer II is stabilized by two intermolecular NH...O(H)N bonds. Twelve vibrations were identified for dimer I and six vibrations for dimer II; the observed frequency shifts show a good agreement with the calculated ones for the structures I and II. Both dimers have comparable binding energies (DeltaE(ZPE)(CP)I, II=-7.02, -6.34 kcal mol-1) being less stable than calculated structures III and IV (DeltaE(ZPE)(CP)III, IV=-9.50, -8.87 kcal mol-1) in which one or two intramolecular hydrogen bonds are disrupted. In the most stable 10-membered cyclic dimer III, two intermolecular CO...HON hydrogen bonds are formed at expense of intramolecular hydrogen bonds of the same type. The formation of the less stable (AHA)2 dimers in the studied matrixes indicates that the formation of (AHA)2 is kinetically and not thermodynamically controlled.  相似文献   

11.
The state-to-state vibrational predissociation (VP) dynamics of the hydrogen-bonded HCl-H(2)O dimer was studied following excitation of the dimer's HCl stretch by detecting the H(2)O fragment. Velocity map imaging (VMI) and resonance-enhanced multiphoton ionization (REMPI) were used to determine pair-correlated product energy distributions. Following vibrational excitation of the HCl stretch of the dimer, H(2)O fragments were detected by 2 + 1 REMPI via the C (1)B(1) (000) ← X (1)A(1) (000) transition. REMPI spectra clearly show H(2)O from dissociation produced in the ground vibrational state. The fragments' center-of-mass (c.m.) translational energy distributions were determined from images of selected rotational states of H(2)O and were converted to rotational state distributions of the HCl cofragment. The distributions were consistent with the previously measured dissociation energy of D(0) = 1334 ± 10 cm(-1) and show a clear preference for rotational levels in the HCl fragment that minimize translational energy release. The usefulness of 2 + 1 REMPI detection of water fragments is discussed.  相似文献   

12.
Using a recent, full-dimensional, ab initio potential energy surface [Y. Wang, X. Huang, B. C. Shepler, B. J. Braams, and J. M. Bowman, J. Chem. Phys. 134, 094509 (2011)] together with rigorous diffusion Monte Carlo calculations of the zero-point energy of the water trimer, we report dissociation energies, D(0), to form one monomer plus the water dimer and three monomers. The calculations make use of essentially exact zero-point energies for the water trimer, dimer, and monomer, and benchmark values of the electronic dissociation energies, D(e), of the water trimer [J. A. Anderson, K. Crager, L. Fedoroff, and G. S. Tschumper, J. Chem. Phys. 121, 11023 (2004)]. The D(0) results are 3855 and 2726 cm(-1) for the 3H(2)O and H(2)O + (H(2)O)(2) dissociation channels, respectively, and 4206 and 2947 cm(-1) for 3D(2)O and D(2)O + (D(2)O)(2) dissociation channels, respectively. The results have estimated uncertainties of 20 and 30 cm(-1) for the monomer plus dimer and three monomer of dissociation channels, respectively.  相似文献   

13.
14.
We have determined the potential-energy function for the internal rotation of the methyl group for o- and m-ethynyltoluene in the electronic excited (S(1)) and ground (S(0)) states by measuring the fluorescence excitation and single-vibronic-level dispersed fluorescence spectra in a jet. The 0-0 bands were observed at 35?444 and 35?416 cm(-1), respectively. The methyl group in o-ethynyltoluene is shown to be a rigid rotor with a potential barrier to rotation of 190 ± 10 cm(-1) in both states. No change in the conformation occurred upon excitation. Barrier heights of m-ethynyltoluene in the S(0) and S(1) states are shown to be 19 ± 3 and 101 ± 1 cm(-1), respectively. A conformational change occurred with rotation by 60[ordinal indicator, masculine] upon excitation. The potential parameters were as follows: reduced rotational constant (B) of 5.323 cm(-1), centrifugal-distortion constant (D) of 6.481 × 10(-5) cm(-1), V(3) = 19 cm(-1), V(6) = -6 cm(-1), and V(9) = 0 cm(-1) in the S(0) state, and B = 5.015 cm(-1), D = 5.392 × 10(-5) cm(-1), V(3) = 101 cm(-1), V(6) = -22 cm(-1), and V(9) = -2 cm(-1) in the S(1) state. For m-methylstyrene, m-tolunitrile, and m-ethynyltoluene, which all have a multiple-bonded carbon in the substituent, we found a new correlation between the Hammett substituent constant σ(m) and the change in the barrier of the methyl group upon excitation.  相似文献   

15.
Potential energy curves of the lowest electronic states of the Ni(2) dimer are calculated near the equilibrium using the multireference ab initio methods including the spin-orbit interaction. Scalar-relativistic results fully confirm previous qualitative interpretations based on the correlation with atomic limits and the symmetry of vacancies in the atomic 3d(9) shells. Spin-orbit calculations firmly establish the symmetry of the ground state as 0(+)(g) and give the excitation energies 70 ± 30 cm(-1) and 200 ± 80 cm(-1) for the lowest 0(-)(u) and 5(u) states, respectively. The model electronic spectrum of the Ni(2) shows some trends that might be observed in matrix isolation far-infrared and electron spin resonance spectra.  相似文献   

16.
We present a rigorous calculation of the contribution of water dimers to the absorption coefficient alpha(nu,T) in the millimeter and far infrared domains, over a wide range (276-310 K) of temperatures. This calculation relies on the explicit consideration of all possible transitions within the entire rovibrational bound state manifold of the dimer. The water dimer is described by the flexible 12-dimensional potential energy surface previously fitted to far IR transitions [C. Leforestier et al., J. Chem. Phys. 117, 8710 (2002)], and which was recently further validated by the good agreement obtained for the calculated equilibrium constant Kp(T) with experimental data [Y. Scribano et al., J. Phys. Chem. A. 110, 5411 (2006)]. Transition dipole matrix elements were computed between all rovibrational states up to an excitation energy of 750 cm(-1), and J=K=5 rotational quantum numbers. It was shown by explicit calculations that these matrix elements could be extrapolated to much higher J values (J=30). Transitions to vibrational states located higher in energy were obtained from interpolation of computed matrix elements between a set of initial states spanning the 0-750 cm(-1) range and all vibrational states up to the dissociation limit (approximately 1200 cm(-1)). We compare our calculations with available experimental measurements of the water continuum absorption in the considered range. It appears that water dimers account for an important fraction of the observed continuum absorption in the millimeter region (0-10 cm(-1)). As frequency increases, their relative contribution decreases, becoming small (approximately 3%) at the highest frequency considered nu=944 cm(-1).  相似文献   

17.
18.
张秀莲 《结构化学》2008,27(1):117-122
The new complex of melamine (MA) with isophthalic acid (H2IA), [(HMA^+)- (HIA^-)]·2H2O, has been prepared and its structure was characterized by X-ray crystallography. The crystal is of triclinic, space group P^-1 with a = 7.0228(6), b = 9.1706(8), c = 12.170(1) A, α = 95.337(2), β = 105.247(2), γ = 97.813(2)^o, V = 742.3(1) A ^3, Mr= 328.30, Z = 2, Dc = 1.469 g/cm^3, ;λ = 0.71073 A,μ(MoKa) = 0.121 mm^-1 and F(000) = 344. The structure was refined to R = 0.0389 and wR = 0.1093 for 2513 observed reflections with I 〉 2σ(I). Melamine dimer and isophthalic acid anion are interlinked by N-H…N and N-H…O hydrogen bonds, resulting in a 1D rosette ribbon in which water molecules and amino groups are self-assembled into quasihexagonal patterns.  相似文献   

19.
New extensive millimeter-wave measurements of the 12C16O dimer have been made, and more than 300 new spectral transitions have been observed in the frequency range 81-135 GHz. A joint analysis of these and previous millimeter-wave data yielded the precise location of 33 new energy levels of A+ symmetry and 20 levels of A- symmetry. These energy levels are located at 8-18 cm(-1) above the zero-point level. Some of them belong to already known stacks, and others make up 9 new stacks of the dimer. Newly determined stacks have K=0, 1, and, for the first time, 2, where K is the projection of the total angular momentum on the intermolecular axis. The energy levels from accompanying rovibrational calculations with the use of a recently developed hybrid CCSD(T)/DFT-SAPT potential are in very good agreement with experiment. Analysis of the calculated wave functions revealed that two new stacks of A+ symmetry with K=2 correspond to overall rotation of the dimer while the other newly observed stacks belong to the geared bend overtone modes. The ground vibrational states of the two "isomers" found are more or less localized at the two minima in the potential surface, whereas all the geared bend excited states show a considerable amount of delocalization.  相似文献   

20.
FosA is a manganese metalloglutathione transferase that confers resistance to the broad-spectrum antibiotic fosfomycin, (1R,2S)-epoxypropylphosphonic acid. The reaction catalyzed by FosA involves the attack by glutathione on fosfomycin to yield the product 1-(S-glutathionyl)-2-hydroxypropylphosphonic acid. The enzyme is a dimer of 16 kDa subunits, each of which harbors one mononuclear Mn(II) site. The coordination environment of the Mn(II) in the FosA x Mn(2+) complex is composed of a glutamate and two histidine ligands and three water molecules. Here we report EPR spectroscopic studies on FosA, in which EPR spectra were obtained at 35 GHz and 2 K using dispersion-detection rapid-passage techniques. This approach provides an absorption envelope line shape, in contrast to the conventional (slow-passage) derivative line shape, and is a more reliable way to collect spectra from Mn(II) centers with large zero-field splitting. We obtain excellent spectra of FosA bound with substrate, substrate analogue phosphate ion, and product, whereas these states cannot be studied by X-band, slow-passage methods. Simulation of the EPR spectra shows that binding of substrate or analogue causes a profound change in the electronic parameters of the Mn(II) ion. The axial zero-field splitting changes from [D] = 0.06 cm(-1) for substrate-free enzyme to 0.23 cm(-1) for fosfomycin-bound enzyme, 0.28 (1) cm(-1) for FosA with phosphate, and 0.27 (1) cm(-1) with product. Such a large zero-field splitting is uncommon for Mn(II). A simple ligand field analysis of this change indicates that binding of the phosphonate/phosphate group of substrate or analogue changes the electronic energy levels of the Mn(II) 3d orbitals by several thousand cm(-1), indicative of a significant change in the Mn(II) coordination sphere. Comparison with related enzymes (glyoxalase I and MnSOD) suggests that the change in the coordination environment on substrate binding may correspond to loss of the glutamate ligand.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号