首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Jon Baker 《Chemical physics》1983,79(1):117-128
The excitation operator manifold required for the calculation of vertical IPs in the EOM/propagator formalism is extended to include products of five spin orbital field operators (refered to as the h5 basis). Spin symmetry adaptation is used for all the operators of this manifold. Using a direct diagonalization technique introduced previously the effect of inclusion of the h5 basis on calculated IPs is illustrated for various levels of approximation to the electron density by numerical applications to ethylene and water. The fourth-order terms thus introduced are shown to have greater magnitude than previously included third-order terms, in agreement with earlier work.  相似文献   

3.
4.
The potential energy surfaces (PESs) for both the ground and the excited electronic states of the C(2)B radical are investigated using various multireference (MR) coupled-cluster (CC) approaches. In the ground state case we employ the reduced MR (RMR) CC approach with singles (S) and doubles (D), the RMR CCSD method, as well as its RMR CCSD(T) version corrected for secondary triples, relying on various model spaces and basis sets. The reliability of this approach is also tested against the benchmark full configuration interaction results obtained for a small Dunning-Hay (DH) basis set. The results imply a clear preference for a cyclic structure which, however, breaks the C(2v) symmetry. This symmetry breaking manifests itself strongly at the level of the independent particle model, as represented by the restricted open-shell Hartree-Fock approximation, but the tendency toward symmetry breaking diminishes with the increasing size of the basis set employed as well as with the enhanced account of the correlation effects. It is likely to disappear in the complete basis set limit. The general model space CCSD method is then used to compute vertical excitation energies for a number of excited states as well as the cuts of the PES as the boron atom moves around the C(2) fragment. These results also explain why no symmetry breaking is found when relying on a spin contaminated unrestricted Hartree-Fock reference, as in the UMP2 method.  相似文献   

5.
We report an extension of the coupled cluster iterative-triples model, CC3, to excited states of open-shell molecules, including radicals. We define the method for both spin-unrestricted Hartree-Fock (UHF) and spin-restricted open-shell Hartree-Fock (ROHF) reference determinants and discuss its efficient implementation in the PSI3 program package. The program is streamlined to use at most O(N(7)) computational steps and avoids storage of the triple-excitation amplitudes for both the ground- and excited-state calculations. The excitation-energy program makes use of a Lowdin projection formalism (comparable to that of earlier implementations) that allows computational reduction of the Davidson algorithm to only the single- and double-excitation space, but limits the calculation to only one excited state at a time. However, a root-following algorithm may be used to compute energies for multiple states of the same symmetry. Benchmark applications of the new methods to the lowest valence (2)B(1) state of the allyl radical, low-lying states of the CH and CO(+) diatomics, and the nitromethyl radical show substantial improvement over ROHF- and UHF-based CCSD excitation energies for states with strong double-excitation character or cases suffering from significant spin contamination. For the allyl radical, CC3 adiabatic excitation energies differ from experiment by less than 0.02 eV, while for the (2)Sigma(+) state of CH, significant errors of more than 0.4 eV remain.  相似文献   

6.
7.
The effective and intermediate Hamiltonian multi-reference coupled-cluster (CC) method with singles and doubles for the doubly ionized (0,2) sector of Fock space (FS) is formulated and implemented. The intermediate Hamiltonian realization of the (0,2) FS problem provides a robust computational scheme for solving the FS-CC equations free from the intruder state problem. By introducing an efficient factorization strategy, we obtain a very efficient tool that can be used for computing double ionization potentials but more significantly to describe multi-reference problems in CC theory, illustrated by twisted ethylene and the potential energy curve for F(2). The latter separates smoothly to two F atoms, while the former avoids the cusp behavior at the 90° dihedral. We also explore the double ionization potentials for several small molecules, H(2)O, CO, C(2)H(2), and C(2)H(4).  相似文献   

8.
通常要用多参考态方法才能合理处理需考虑旋轨耦合(SOC)效应的开壳层分子如AuO和AuS的低电子态.事实上,通过选取合适的参考态,采用运动方程耦合簇方法(EOM-CC)也能计算这些分子的一些低电子态,而且EOM-CC方法是单参考态方法,使用起来比多参考态方法更加简单.本文采用最近发展的含旋轨耦合的EOM-CC计算电离能的方法(EOMIP-CC),选取对应的负离子为参考态,在CCSD级别上计算了AuO和AuS低电子态的性质.在不考虑旋轨耦合时,通过比较EOMIP-CCSD和EOMIP-CCSDT的结果考察EOMIPCCSD的精度.此外,与EOMIP-CCSDT结果相比,如果自旋污染较为显著而且T1的模较大时,UCCSD(T)方法对能量最低的某一特定对称性的电子态的所对应的电离能误差约为0.1-0.15 eV.在考虑了旋轨耦合效应后,我们的方法得到的键长和振动频率与实验值吻合较好.另一方面,虽然EOMIP-SOC-CCSD高估了能量较高的2Δ3/2态、2Σ+1/2态和2Π1/2态的能量,但是对于其它能量更低的电子态,它们的能量与已有实验值误差在0.2 eV左右.这显示我们所用的含SOC的EOMIP-CCSD方法对原本需要用多参考态方法才能处理的AuO和AuS低电子态能给出可靠的结果.  相似文献   

9.
In the present work, we report exploitation of spatial symmetry in calculations of ground state energy and analytic first derivatives of closed-shell molecules based on our previously developed coupled-cluster (CC) approach with spin-orbit coupling. Both time-reversal symmetry and spatial symmetry for D(2h) and its subgroups are exploited in the implementation. The symmetry of a certain spin case for the amplitude, intermediate, or density matrix is determined by the symmetry of the corresponding spin functions and the direct product decomposition method is employed in computations involving these quantities. The reduction in computational effort achieved through the use of spatial symmetry is larger than the order of the molecular single point group. Symmetry exploitation renders application of the CC approaches with spin-orbit coupling to larger closed-shell molecules containing heavy elements with high accuracy.  相似文献   

10.
To describe singly-ionized states of molecular clusters we devised an effective Hamiltonian approach that combines (1) accurate monomer ionization potentials from many-electron wave functions with (2) polarization shifts and (3) effective monomer couplings obtained from a simple one-electron approach (the superposition-of-fragment-states (SFS) method [Valeev et al., J. Am. Chem. Soc., 2006, 128, 9882]). The accuracy of the intermolecular coupling parameters evaluated with SFS Hartree-Fock (HF) and Density-Functional-Theory (DFT) variants was evaluated for several weakly-bound dimers and compared against the state-of-the-art equation-of-motion ionization-potential coupled-cluster singles and doubles (EOM-IP-CCSD) data of Krylov and co-workers. The SFS-HF method produces coupling integrals accurate to a few percent, whereas SFS-DFT predictions are substantially worse. A hybrid approach combining SFS-HF couplings and shifts with EOM-IP-CCSD ionization potentials of monomers (denoted as SFS-EOM-IP-CCSD) was applied to ionized states of two conformers of a benzene dimer and ten representative DNA base pairs. The 16 considered SFS-EOM-IP-CCSD ionization potentials of the benzene dimer differed from the reference EOM-IP-CCSD IPs of Krylov and co-workers [Pieniazek et al., J. Chem. Phys. 2007, 127, 044317; Bravaya et al., Phys. Chem. Chem. Phys. 2010, 12, 2261] by less than 0.1 eV on average, and at most by 0.2 eV. For the DNA base pairs the mean absolute (median) deviation of the SFS-EOM-IP-CCSD IPs was 0.27 (0.23) eV; several deviations for non-Koopmans states were as large as 0.9 eV. The SFS-EOM-IP-CCSD method can be readily applied to large molecular clusters with computational effort scaling cubically with the size of the cluster.  相似文献   

11.
12.
A two-component closed-shell coupled-cluster (CC) approach using relativistic effective core potentials with spin-orbit coupling included in the post-Hartree-Fock treatment is proposed and implemented at the CC singles and doubles (CCSD) level as well as at the CCSD level augmented by a perturbative treatment of triple excitations [CCSD(T)]. The latter invokes as an additional approximation the neglect of the occupied-occupied and virtual-virtual blocks of the spin-orbit coupling matrix in order to avoid the iterative N(7) steps in the treatment of triple excitations. The computational effort of the implemented two-component CC methods is about 10-15 times that of its corresponding nonrelativistic counterpart, which needs to be compared to the by a factor of 32 higher cost for fully relativistic schemes and schemes with spin-orbit coupling included already at the Hartree-Fock self-consistent field (HF-SCF) level. This substantial computational saving is due to the use of real molecular orbitals and real two-electron integrals. Results on 5p-, 6p-, and 7p-block element compounds show that the bond lengths and harmonic frequencies obtained with the present two-component CCSD method agree well with those computed with the CCSD approach including spin-orbit coupling at the HF-SCF level even for the 7p-block element compounds. As for the CCSD(T) approach, high accuracy for 5p- and 6p-block element compounds is retained. However, the difference in bond lengths and harmonic frequencies becomes somewhat more pronounced for the 7p-block element compounds.  相似文献   

13.
We report the implementation of the spin-conserving and spin-flipping variants of the equation-of-motion (EOM) coupled-cluster (CC) model, which includes single and double excitations in the CC part and single, double, and triple excitations in the EOM part, i.e., EOM-CC(2,3) [Hirata, Nooijen, Bartlett, Chem. Phys. Lett. 326, 255 (2000)] for closed- and open-shell references. Inclusion of triples significantly improves the accuracy of EOM-CCSD for excitation energies (EOM-EE-CCSD) and its spin-flip (SF) counterpart, EOM-SF-CCSD, especially when the reference wave function is strongly spin-contaminated. A less computationally demanding active space variant with semi-internal triples has also been implemented. The capabilities of full and active space EOM-CC(2,3) are demonstrated by applications to CO(+) and CH radicals as well as to the methylene and trimethylenemethane diradicals and the dehydro-m-xylylene triradical.  相似文献   

14.
An implementation of the coupled cluster (CC) singles, doubles, and a hybrid treatment of connected triples [denoted as CCSD(T)-h], based on the unrestricted Hartree-Fock (UHF) reference, is presented. Based on the spin-integrated formulation, we have developed a computer program to achieve the automatic derivation and implementation of the CCSD(T)-h approach. The CCSD(T)-h approach computationally scales as the seventh power of the system size, and is affordable for many medium-sized systems. The present approach has been applied to study the equilibrium geometries and harmonic vibrational frequencies in a number of open-shell diatomic molecules and bond breaking potential energy profiles in several open-shell molecules, including CH(3), NH(2), and SiH(2). For all systems under study, the overall performance of the UHF-based CCSD(T)-h approach is very close to that of the corresponding CCSDT (CC singles, doubles, and triples), and much better than that of the UHF-based CCSD(T) (CC singles, doubles, and perturbative triples).  相似文献   

15.
We present accurate ionization potentials (IPs) for small lithium clusters and hydrogenated lithium clusters (n=1-4), computed using coupled-cluster singles and doubles theory augmented with a perturbative correction for connected triple excitations [CCSD(T)] with the correlation-consistent weighted core-valence quadruple-zeta basis set (cc-pwCVQZ). In some cases the full CCSDT method has been used. Comparison of computed binding energies with experiment for the pure cationic lithium clusters reveals excellent agreement, demonstrating that previous discrepancies between computed and experimentally derived atomization energies for the corresponding neutral clusters are due to the use of an inaccurate experimental IP for Li(4). The experimental IP for Li(4) falls 0.43 eV below our theoretical adiabatic value of 4.74 eV, which should be a lower bound to the measured IP. Our recommended zero-point corrected adiabatic IPs for Li, Li(2), Li(3), Li(4), LiH, Li(2)H, Li(3)H, and Li(4)H are 5.39, 5.14, 4.11, 4.74, 7.69, 3.98, 4.69, and 4.05 eV, respectively. Zero-point vibrationally corrected CCSD(T) atomization energies per atom for Li(2) (+), Li(3) (+), Li(4) (+), LiH(+), Li(2)H(+), Li(3)H(+), and Li(4)H(+) are 0.64, 0.96, 0.90, 0.056, 1.62, 1.40, and 1.40 eV, respectively.  相似文献   

16.
采用我们最近发展的含旋轨耦合的运动方程耦合簇计算电离能(EOMIP-CC)方法,在CCSD级别上计算了硫族铅化物PbS、PbSe、PbTe阳离子低电子态的平衡键长和谐振频率以及绝热和垂直电离能,得到的结果与已有的实验值吻合较好.不考虑旋轨耦合(SOC)的情况下通过与CCSD(T)的计算结果比较,考察了三重激发对计算结果的影响,结果显示考虑三重激发的贡献后得到的键长和频率结果与实验值吻合更好.计算结果表明PbTe+中2Π态的能量分裂明显大于PbS+和PbSe+中2Π态的能量分裂,但是PbTe+中2Π1/2和2Σ1/2态之间的相互耦合则明显弱于PbS+和PbSe+中这两个态之间的耦合.PbTe+中2Π1/2和2Σ1/2态之间耦合很弱,一方面是因为2Σ+态和2Π态的能量差比PbS+和PbSe+中2Σ+态和2Π态的能量差大,另一方面还由于PbTe+中2Π1/2和2Σ1/2态之间的旋轨耦合矩阵元只是PbS+和PbSe+中2Π1/2和2Σ1/2态之间的旋轨耦合矩阵元的一半.这些计算结果为PbS+、PbSe+、PbTe+阳离子的低电子态性质提供了新的理论数据,可以为将来的实验数据提供参考.  相似文献   

17.
梁艳妮  王繁 《物理化学学报》2001,30(8):1447-1455
通常要用多参考态方法才能合理处理需考虑旋轨耦合(SOC)效应的开壳层分子如AuO和AuS的低电子态. 事实上,通过选取合适的参考态,采用运动方程耦合簇方法(EOM-CC)也能计算这些分子的一些低电子态,而且EOM-CC方法是单参考态方法,使用起来比多参考态方法更加简单. 本文采用最近发展的含旋轨耦合的EOM-CC 计算电离能的方法(EOMIP-CC),选取对应的负离子为参考态,在CCSD 级别上计算了AuO 和AuS低电子态的性质. 在不考虑旋轨耦合时,通过比较EOMIP-CCSD和EOMIP-CCSDT的结果考察EOMIPCCSD的精度. 此外,与EOMIP-CCSDT结果相比,如果自旋污染较为显著而且T1的模较大时,UCCSD(T)方法对能量最低的某一特定对称性的电子态的所对应的电离能误差约为0.1-0.15 eV. 在考虑了旋轨耦合效应后,我们的方法得到的键长和振动频率与实验值吻合较好. 另一方面,虽然EOMIP-SOC-CCSD高估了能量较高的2Δ3/2态、2Σ1/2+态和2Π1/2态的能量,但是对于其它能量更低的电子态,它们的能量与已有实验值误差在0.2 eV 左右. 这显示我们所用的含SOC的EOMIP-CCSD方法对原本需要用多参考态方法才能处理的AuO和AuS低电子态能给出可靠的结果.  相似文献   

18.
The multiconfigurational spin tensor electron propagator (MCSTEP) method was developed as an implementation of electron propagator/single particle Green's function methods. MCSTEP was specifically designed for open‐shell and highly correlated (nondynamically correlated) initial states. Ionization or electron attachment is always from a state of pure spin symmetry to a state of pure spin symmetry even if the initial state is open shell. MCSTEP can be used as well for molecules with initial states that can be accurately described by a single determinant‐based theory. The initial state that is used in MCSTEP is typically a small complete active space (CAS) multiconfigurational self‐consistent field (MCSCF) state. We previously examined different small CAS choices for MCSTEP initial states and have developed a generally workable scheme. This article further examines some different ways to choose the CAS for MCSTEP. With several logical CAS choices, we have calculated the low‐lying vertical MCSTEP ionization potentials (IPs) of C2, N2, linear H2O, O2, CH2, and NH2, comparing them with large multireference configuration interaction (MRCI) calculations. We conclude that generally a small modification and extension of our previous schemes for choosing the MCSTEP CAS gives IPs that most effectively mimics the results of large scale MRCI IPs in general. © 2006 Wiley Periodicals, Inc. Int J Quantum Chem, 2007  相似文献   

19.
New algorithms for iterative diagonalization procedures that solve for a small set of eigen‐states of a large matrix are described. The performance of the algorithms is illustrated by calculations of low and high‐lying ionized and electronically excited states using equation‐of‐motion coupled‐cluster methods with single and double substitutions (EOM‐IP‐CCSD and EOM‐EE‐CCSD). We present two algorithms suitable for calculating excited states that are close to a specified energy shift (interior eigenvalues). One solver is based on the Davidson algorithm, a diagonalization procedure commonly used in quantum‐chemical calculations. The second is a recently developed solver, called the “Generalized Preconditioned Locally Harmonic Residual (GPLHR) method.” We also present a modification of the Davidson procedure that allows one to solve for a specific transition. The details of the algorithms, their computational scaling, and memory requirements are described. The new algorithms are implemented within the EOM‐CC suite of methods in the Q‐Chem electronic structure program. © 2014 Wiley Periodicals, Inc.  相似文献   

20.
Complete active space self-consistent field (CASSCF), multireference configuration interaction (MRCI), density functional theory (DFT), time dependent DFT (TDDFT) and the singles and doubles coupled-cluster (CC2) methodologies have been used to study the ground state and excited states of protonated and neutral Schiff bases (PSB and SB) as models for the retinal chromophore. Systems with two to four conjugated double bonds are investigated. Geometry relaxation effects are studied in the excited pipi* state using the aforementioned methods. Taking the MRCI results as reference we find that CASSCF results are quite reliable even though overshooting of geometry changes is observed. TDDFT does not reproduce bond alternation well in the pipi* state. CC2 takes an intermediate position. Environmental effects due to solvent or protein surroundings have been studied in the excited states of the PSBs and SBs using a water molecule and solvated formate as model cases. Particular emphasis is given to the proton transfer process from the PSB to its solvent partner in the excited state. It is found that its feasibility is significantly enhanced in the excited state as compared to the ground state, which means that a proton transfer could be initiated already at an early step in the photodynamics of PSBs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号