首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
The multichromophoric dyads 1, 2 and triad 3 have been synthesized by coupling of the appropriately functionalized chlorin derivative with naphthalene diimide dyes through esterification, and subsequent metalation of the chlorin center with zinc acetate. The self-assembly properties of naphthalene diimide (NDI)-zinc chlorin (ZnChl) dyads 1, 2 and triad 3 have been studied in nonpolar, aprotic solvents by UV-vis, CD, and steady-state emission spectroscopy, revealing formation of rod-like structures by noncovalent interactions of zinc chlorin units, while the appended naphthalene diimide dyes do not aggregate at the periphery of the rod antennae. In all these systems, photoexcitation of the enveloping naphthalene diimides at 540 and 620 nm, respectively, leads to highly efficient energy-transfer processes (FRET; phiET > or = 0.99) to the inner zinc chlorin backbone, as explored by time-resolved fluorescence spectroscopy on the picosecond time scale. The efficiencies of zinc chlorin rod aggregates for the harvesting of solar light are markedly increased from 26% for dyad 2 up to 63% for triad 3, compared to the LH capacity of the monochromophoric aggregates of model system ZnChl 6a. Thus, with the self-assembled zinc chlorin rod antenna based on triad 3, a highly efficient artificial LH system has been achieved.  相似文献   

2.
Conversion of the formyl group at the 7-position in chlorophyll (Chl) b to the methyl group via the hydroxymethyl group is biologically important in Chl b degradation. To clarify the effects of the 7-substituents on demetalation properties of chlorophyllous pigments in the early process of Chl b degradation, we report demetalation kinetics of the zinc Chl derivative possessing a 7-hydroxymethyl group, which is a good model compound of the intermediate molecule in the early process of Chl b degradation, under acidic conditions, and compare its properties with those of zinc Chl derivatives possessing a methyl and a formyl group, which are model compounds of Chls a and b, respectively. Demetalation rate constants of 7-hydroxymethyl zinc chlorin were much larger than those of 7-formyl zinc chlorin, but were slightly smaller than those of 7-methyl zinc chlorin. The activation energy for demetalation reaction of 7-formyl zinc chlorin was larger than those of other derivatives. Demetalation rate constants of 7-deformyl-7-hydroxymethyl Chl b were also larger than those of Chl b, and were similar to those of Chl a. These indicate that the 7-hydroxymethyl group in the chlorin macrocycle has a smaller effect on demetalation compared with the 7-formyl group.  相似文献   

3.
Abstract— Zinc porphin is photoreduced to zinc chlorin through an intermediate dihydroporphin (PH2) by ascorbic acid in ethanol containing 1% to 10% (v/v) piperidine. Under the same conditions zinc chlorin is more slowly photoreduced to zinc tetrahydroporphin. The reactions leading to chlorin are photosensitized by the product chlorin and so are autocatalytic in red light. Quantum yields for these reactions range up to 0.05.Other aliphatic amines catalyze these reactions, but at rates peculiar to the amine. The immediate product of reduction of zinc porphin, PH2, is distinguished by an intense band at 437 nm; it reverts to porphin in the dark in the presence of oxygen or dehydroascorbic acid. Its conversion to chlorin is effected by light absorbed by porphin or chlorin, but not by light absorbed by PH2 itself. A suggested structure for PH2, compatible with the observed reactions, has added hydrogens on one bridge carbon and one β-pyrrole carbon. The possibility of an analogy between these reactions and the biochemical conversion of protochlorophyll to chlorophyll is discussed.  相似文献   

4.
The reaction of “spanned” zinc porphyrin with organic peroxides in the presence of pyridine at 298 K was studied. The kinetic characteristics of the reaction were obtained. The presence of pyridine favors the formation of the zinc chlorin complex. The nature of the nitrogen base affects the character and rate of the reactions of the zinc porphyrin with peroxide. The structures of the sterically strained metal porphyrin and of the chlorin complex formed in the reaction were optimized by PM3 calculations. As follows from the geometric structure of the macrocyclic compounds, the deformations of the macroring enhance in going from zinc porphyrin to zinc chlorin.  相似文献   

5.
Photocatalytic CO(2) reduction has been studied for two dyads with porphyrin covalently attached to rhenium tricarbonyl bipyridine moieties, and on separate components consisting of [Re(CO)(3)(Picoline)Bpy](+) and either zinc porphyrin or zinc chlorin. TONs decrease in the order: zinc porphyrin + Re > long spacer dyad > zinc chlorin + Re > short spacer dyad.  相似文献   

6.
Chlorin building blocks incorporating a geminal dimethyl group in the reduced ring and synthetic handles in specific patterns at the perimeter of the macrocycle are expected to have utility in biomimetic and materials chemistry. A prior route employed condensation of a dihydrodipyrrin (Western half) and a bromodipyrromethane-monocarbinol (Eastern half), followed by oxidative cyclization of the putative dihydrobilene-a to form the meso-substituted zinc chlorin in yields of approximately 10%. The limited stability of the dihydrodipyrrin precluded study of the chlorin-forming process. We now have refined this methodology. A tetrahydrodipyrrin Western half (2,3,4,5-tetrahydro-1,3,3-trimethyldipyrrin) has been synthesized and found to be quite stable. The condensation of the Western half and an Eastern half (100 mM each) proceeded smoothly in CH(3)CN containing 100 mM TFA at room temperature for 30 min. The resulting linear tetrapyrrole, a 2,3,4,5-tetrahydrobilene-a, also is quite stable, enabling study of the conversion to chlorin. Refined conditions for the oxidative cyclization were found to include the following: the tetrahydrobilene-a (10 mM), AgTf (3-5 molar equiv), Zn(OAc)(2) (15 molar equiv), and 2,2,6,6-tetramethylpiperidine (15 molar equiv) in CH(3)CN at reflux exposed to air for 4-6 h, affording the zinc chlorin. The chlorin-forming process could be implemented in either a two-flask process or a one-flask process. The two-flask process was applied to form six zinc chlorins bearing substituents such as pentafluorophenyl, 3,5-di-tert-butylphenyl, TMS-ethyl benzoate, iodophenyl, or ethynylphenyl (deprotection of the TMS-ethynyl group occurred during the oxidative cyclization process). The stepwise yields (isolated) for the condensation and oxidative cyclization processes forming the tetrahydrobilene and zinc chlorin were 32-72% and 27-62%, respectively, giving overall yields of zinc chlorin from the Eastern and Western halves of 12-45%. Taken together, the refinements introduced enable 100-mg quantities of chlorin building blocks to be prepared in a facile and rational manner.  相似文献   

7.
Zinc complex of pyropheophorbide‐b, a derivative of chlorophyll‐b, was covalently dimerized through ethylene glycol diester. The synthetic homo‐dyad was axially ligated with two methanol molecules from the β‐face and both the diastereomerically coordinating methanol species were hydrogen bonded with the keto‐carbonyl groups of the neighboring chlorin in a complex. The resulting folded conformer in a solution was confirmed by visible, 1H NMR and IR spectra. All the synthetic zinc chlorin homo‐ and hetero‐dyads consisting of pyropheophorbides‐a, b and/or d took the above methanol‐locked and ππ stacked supramolecules in 1% (v/v) methanol and benzene to give redmost (Qy) electronic absorption band(s) at longer wavelengths than those of the corresponding monomeric chlorin composites. The other zinc chlorin and bacteriochlorin homo‐dyads completely formed similar folded conformers in the same solution, while zinc inverse chlorin and porphyrin homo‐dyads partially took such supramolecules. The J‐type aggregation to folded conformers and the redshift values of composite Qy bands were dependent on the electronic and steric factors of porphyrinoid moieties in dyads.  相似文献   

8.
Chlorins/oxochlorins bearing distinct patterns of substituents are valuable compounds in bioorganic and materials chemistry. Treatment of a 5,10-diaryl-substituted chlorin or oxochlorin with TFA-d(1) resulted in selective deuteriation of the remaining meso positions (15, 20) rather than any of the beta-pyrrolic positions. Electrophilic iodination or bromination of a 5,10-diaryl-substituted chlorin proceeded with high regioselectivity, affording the 5,10-diaryl-15-halo-substituted chlorin. Iodination or bromination of a free base 5,10-diaryloxochlorin gave a mixture of products arising through halogenation at the 15-, 20-, and beta-pyrrolic positions, while bromination of a zinc 5,10-diaryloxochlorin selectively gave the 5,10-diaryl-20-bromo-substituted oxochlorin. The Suzuki coupling reaction of a phenyl boronic acid derivative and a 5,10-diaryl-15-iodooxochlorin or 5,10-diaryl-20-bromooxochlorin gave the corresponding 5,10,15- or 5,10,20-triaryloxochlorin. The introduction of a third aryl substituent into the chlorin or oxochlorin causes an approximately 5-nm red shift of the long wavelength Q(y) absorption band. Two phenylethyne-linked oxochlorin-oxochlorin dyads in distinct metalation states (zinc/free base, free base/zinc) were prepared by Sonogashira coupling reactions of a 5,10-diaryl-20-bromooxochlorin and a 10-substituted ethynylphenyl oxochlorin. This study provides access to new chlorins/oxochlorins that can be utilized in diverse applications.  相似文献   

9.
Abstract— Zinc chlorins possessing 31-hydroxyl and 131-carbonyl groups self-assemble in nonpolar solvents, such as hexane, in a manner similar to bacteriochlorophyll c in the chlorosomes of green photosynthetic bacteria. Visible absorption and steady-state fluorescence measurements of zinc chlorin aggregates containing a small amount of the bacteriochlorin-zinc chlorin dyad molecules showed that singlet excitation energy transfer from the zinc chlorin aggregate to the bacteriochlorin moiety of the coaggre-gated dyad occurs in the homogeneous solution. In the coaggregated dyad, the bacteriochlorin moiety plays the role of an efficient energy trap and the chlorin moiety the role of an anchor to the donor aggregate. The artificial assembly thus mimics the structure and function of natural chlorosomes and can be considered as the first in vitro supramolecular light-harvesting antenna.  相似文献   

10.
An artificial light-harvesting rod aggregate based on zinc chlorin and covalently linked naphthalene bisimide chromophore has been realized by self-assembly. Efficient energy transfer (phiET >/= 0.99) takes place upon excitation at 620 nm from peripheral naphthalene bisimides to the zinc chlorin rod aggregate backbone. The appended naphthalene bisimide dyes improve the total LH efficiency of the rod aggregate by 26%. Thus, the present bioinspired antenna system is promising for application in nanodevices for the effective utilization of solar energy by bridging the "green gap".  相似文献   

11.
We describe a two-step conversion of C-alkylated zinc chlorins to zinc oxochlorins wherein the keto group is located in the reduced ring (17-position) of the macrocycle. The transformation proceeds by hydroxylation upon exposure to alumina followed by dehydrogenation with DDQ. The reactions are compatible with ethyne, iodo, ester, trimethylsilyl, and pentafluorophenyl groups. A route to a spirohexyl-substituted chlorin/oxochlorin has also been developed. Representative chlorins and oxochlorins were characterized by static and time-resolved absorption spectroscopy and fluorescence spectroscopy, resonance Raman spectroscopy, and electrochemistry. The fluorescence quantum yields of the zinc oxochlorins (Phi(f) = 0.030-0.047) or free base (Fb) oxochlorins (Phi(f) = 0.13-0.16) are comparable to those of zinc tetraphenylporphyrin (ZnTPP) or free base tetraphenylporphyrin (FbTPP), respectively. The excited-state lifetimes of the zinc oxochlorins (tau = 0.5-0.7 ns) are on average 4-fold lower than that of ZnTPP, and the lifetimes of the Fb oxochlorins (tau = 7.4-8.9 ns) are approximately 40% shorter than that of FbTPP. Time-resolved absorption spectroscopy of a zinc oxochlorin indicates the yield of intersystem crossing is >70%. Resonance Raman spectroscopy of copper oxochlorins show strong resonance enhancement of the keto group upon Soret excitation but not with Q(y)()-band excitation, which is attributed to the location of the keto group in the reduced ring (rather than in the isocyclic ring as occurs in chlorophylls). The one-electron oxidation potential of the zinc oxochlorins is shifted to more positive potentials by approximately 240 mV compared with that of the zinc chlorin. Collectively, the fluorescence yields, excited-state lifetimes, oxidation potentials, and various spectral characteristics of the chlorin and oxochlorin building blocks provide the foundation for studies of photochemical processes in larger architectures based on these chromophores.  相似文献   

12.
Chlorins provide the basis for plant photosynthesis, but synthetic model systems have generally employed porphyrins as surrogates due to the unavailability of suitable chlorin building blocks. We have adapted a route pioneered by Battersby to gain access to chlorins that bear two meso substituents, a geminal dimethyl group to lock in the chlorin hydrogenation level, and no flanking meso and beta substituents. The synthesis involves convergent joining of an Eastern half and a Western half. A 3,3-dimethyl-2,3-dihydrodipyrrin (Western half) was synthesized in four steps from pyrrole-2-carboxaldehyde. A bromodipyrromethane carbinol (Eastern half) was prepared by sequential acylation and bromination of a 5-substituted dipyrromethane followed by reduction. Chlorin formation is achieved by a two-flask process of acid-catalyzed condensation followed by metal-mediated oxidative cyclization. The latter reaction has heretofore been performed with copper templates. Investigation of conditions for this multistep process led to copper-free conditions (zinc acetate, AgIO(3), and piperidine in toluene at 80 degrees C for 2 h). The zinc chlorin was obtained in yields of approximately 10% and could be easily demetalated to give the corresponding free base chlorin. The synthetic process is compatible with a range of meso substituents (p-tolyl, mesityl, pentafluorophenyl, 4-[2-(trimethylsilyl)ethynyl]phenyl, 4-iodophenyl). Altogether four free base and four zinc chlorins have been prepared. The chlorins exhibit typical absorption spectra, fluorescence spectra, and fluorescence quantum yields. The ease of synthetic access, presence of appropriate substituents, and characteristic spectral features make these types of chlorins well suited for incorporation in synthetic model systems.  相似文献   

13.
Understanding the effects of substituents on the spectra of chlorins is essential for a wide variety of applications. Recent developments in synthetic methodology have made possible systematic studies of the properties of the chlorin macrocycle as a function of diverse types and patterns of substituents. In this paper, the spectral, vibrational and excited-state decay characteristics are examined for a set of synthetic chlorins. The chlorins bear substituents at the 5,10,15 (meso) positions or the 3,13 (beta) positions (plus 10-mesityl in a series of compounds) and include 24 zinc chlorins, 18 free base (Fb) analogs and one Fb or zinc oxophorbine. The oxophorbine contains the keto-bearing isocyclic ring present in the natural photosynthetic pigments (e.g. chlorophyll a). The substituents cause no significant perturbation to the structure of the chlorin macrocycle, as evidenced by the vibrational properties investigated using resonance Raman spectroscopy. In contrast, the fluorescence properties are significantly altered due to the electronic effects of substituents. For example, the fluorescence wavelength maximum, quantum yield and lifetime for a zinc chlorin bearing 3,13-diacetyl and 10-mesityl groups (662 nm, 0.28, 6.0 ns) differ substantially from those of the parent unsubstituted chlorin (602 nm, 0.062, 1.7 ns). Each of these properties of the lowest singlet excited state can be progressively stepped between these two extremes by incorporating different substituents. These perturbations are associated with significant changes in the rate constants of the decay pathways of the lowest excited singlet state. In this regard, the zinc chlorins with the red-most fluorescence also have the greatest radiative decay rate constant and are expected to have the fastest nonradiative internal conversion to the ground state. Nonetheless, these complexes have the longest singlet excited-state lifetime. The Fb chlorins bearing the same substituents exhibit similar fluorescence properties. Such combinations of factors render the chlorins suitable for a range of applications that require tunable coverage of the solar spectrum, long-lived excited states and red-region fluorescence.  相似文献   

14.
Photophysical properties of a lipophilic chlorin derivative and its zinc and tin chelates were investigated in chloroform. The quantum yields of the fluorescence phi F, of the S1----T1 intersystem crossing phi T and of singlet oxygen (1 delta g) formation phi delta, as well as the Stern-Volmer constants for the quenching of the S1 states by oxygen and the rate constants of quenching of O2(1 delta g) by the chlorins were measured. In comparison to the metal-free chlorin an increase of phi T and a decrease of phi F have been observed for the metal-containing derivatives, whereas the phi delta values remain constant.  相似文献   

15.
Abstract New classes of synthetic chlorin and bacteriochlorin macrocycles are characterized by narrow spectral widths, tunable absorption and fluorescence features across the red and near-infrared (NIR) regions, tunable excited-state lifetimes (<1 to >10 ns) and chemical stability. Such properties make dyad constructs based on synthetic chlorin and bacteriochlorin units intriguing candidates for the development of NIR molecular imaging probes. In this study, two such dyads (FbC-FbB and ZnC-FbB) were investigated. The dyads contain either a free base (Fb) or zinc (Zn) chlorin (C) as the energy donor and a free base bacteriochlorin (B) as the energy acceptor. In both constructs, energy transfer from the chlorin to bacteriochlorin occurs with a rate constant of approximately (5 ps)(-1) and a yield of >99%. Thus, each dyad effectively behaves as a single chromophore with an exceptionally large Stokes shift (85 nm for FbC-FbB and 110 nm for ZnC-FbB) between the red-region absorption of the chlorin and the NIR fluorescence of the bacteriochlorin (lambda(f) = 760 nm, Phi(f) = 0.19, tau approximately 5.5 ns in toluene). The long-wavelength transitions (absorption, emission) of each constituent of each dyad exhibit narrow (相似文献   

16.
Two kinds of zinc 31-hydroxy-131-oxo-chlorins 1 and 2 possessing a pyrenyl group at the 17-propionate residue, of which the linker length between the chlorin and the pyrene moieties was varied, were synthesised from naturally occurring chlorophyll a, and were self-assembled in an aqueous solution. Both zinc chlorins 1 and 2 exhibited Qy absorption bands around 720 nm accompanying circular dichroism signals in the Qy region, indicating that these zinc chlorins could form self-aggregates like chlorosomes of green photosynthetic bacteria. Addition of γ-cyclodextrin into an aqueous solution containing the self-aggregates of zinc chlorin 1 esterified with 1-pyrenylmethanol induced the appearance of excimer emission of the pyrene moieties around 480 nm as well as increased the fluorescence intensities of the pyrene monomers at 378 and 396 nm, while only an increase in fluorescence from the monomeric pyrene moiety was observed in the case of 2 esterified with 4-(1-pyrenyl)butanol. Exogenous γ-cyclodextrin unchanged the spectral features derived from the chlorin moieties of 1 and 2 in the aqueous phase. These suggest that the encapsulation of the pyrenyl groups in the zinc chlorins unchanged their assembling states under the present conditions.  相似文献   

17.
The photochemical and electrochemical properties of four chlorin-C60 or porphyrin-C60 dyads having the same short spacer between the macrocycle and the fullerene are examined. In contrast with all the previous results on porphyrin-fullerene dyads, the photoexcitation of a zinc chlorin-C60 dyad results in an unusually long-lived radical ion pair which decays via first-order kinetics with a decay rate constant of 9.1 x 10(3) x s(-1). This value is 2-6 orders of magnitude smaller than values reported for all other porphyrin or chlorin donor-acceptor of the molecule dyad systems. The formation of radical cations of the donor part and the radical anion of the acceptor part was also confirmed by ESR measurements under photoirradiation at low temperature. The photoexcitation of other dyads (free-base chlorin-C60, zinc porphyrin-C60, and free-base porphyrin-C60 dyads) results in formation of the ion pairs which decay quickly to the triplet excited states of the chlorin or porphyrin moiety via the higher lying radical ion pair states as is expected from the redox potentials.  相似文献   

18.
A series of zinc 3(1)-hydroxymethyl chlorins 10 a-e and zinc 3(1)-hydroxyethyl chlorins 17 with varied structural features were synthesized by modifying naturally occurring chlorophyll a. Solvent-, temperature-, and concentration-dependent UV/Vis and CD spectroscopic methods as well as microscopic investigations were performed to explore the importance of particular functional groups and steric effects on the self-assembly behavior of these zinc chlorins. Semisynthetic zinc chlorins 10 a-e possess the three functional units relevant for self-assembly found in their natural bacteriochlorophyll (BChl) counterparts, namely, the 3(1)-OH group, a central metal ion, and the 13(1) C==O moiety along the Q(y) axis, and they contain various 17(2)-substituents. Depending on whether the zinc chlorins have 17(2)-hydrophobic or hydrophilic side chains, they self-assemble in nonpolar organic solvents or in aqueous media, respectively. Zinc chlorins possessing at least two long side chains provide soluble self-aggregates that are stable in solution for a prolonged time, thus facilitating elucidation of their properties by optical spectroscopy. The morphology of the zinc chlorin aggregates was elucidated by atomic force microscopy (AFM) studies, revealing well-defined nanoscale rod structures for zinc chlorin 10 b with a height of about 6 nm. It is worth noting that this size is in good accordance with a tubular arrangement of the dyes similar to that observed in their natural BChl counterparts in the light-harvesting chlorosomes of green bacteria. Furthermore, for the epimeric 3(1)-hydroxyethyl zinc chlorins 17 with hydrophobic side chains, the influence of the chirality center at the 3(1)-position on the aggregation behavior was studied in detail by UV/Vis and CD spectroscopy. Unlike zinc chlorins 10, the 3(1)-hydroxyethyl zinc chlorins 17 formed only small oligomers and not higher rod aggregate structures, which can be attributed to the steric effect imposed by the additional methyl group at the 3(1)-position.  相似文献   

19.
A set of chlorin-chlorin and oxochlorin-oxochlorin dyads has been prepared with components in the same or different metalation states. In each case a 4,4'-diphenylethyne linker spans the respective 10-position of each macrocycle. The dyads have been studied using static and time-resolved absorption and emission spectroscopy, resonance Raman spectroscopy, and electrochemical techniques. Excited-state energy transfer from a zinc chlorin to a free-base (Fb) chlorin occurs with a rate constant of (110 ps)(-1) and an efficiency of 93%; similar values of (140 ps)(-1) and 83% are found for the corresponding oxochlorin dyad. Energy transfer in both dyads is slower and less efficient than found previously for the analogous porphyrin dyad, which displays a rate of (24 ps)(-1) and a yield of 99%. The slower rates and diminished efficiencies in the ZnFb chlorin and oxochlorin dyads versus the ZnFb porphyrin dyad are attributed to substantially weaker linker-mediated through-bond (TB) electron-exchange coupling (as indicated by resonance Raman data). Although the through-space (TS, i.e., dipole-dipole) coupling in the ZnFb-chlorin and -oxochlorin dyads is enhanced relative to the ZnFb porphyrin dyad (as indicated by F?rster calculations), this enhancement is insufficient to compensate for the greatly diminished TB coupling. Taken together, the chlorin and oxochlorin dyads examined herein serve as benchmarks for elucidating the energy-transfer, electrochemical, and other properties of light-harvesting arrays containing multiple chlorins or oxochlorins.  相似文献   

20.
The Qy absorption band of two chlorophyll derivatives, zinc chlorin e6 (ZnCe6) and zinc pheophorbide a (ZnPheida), in aqueous solution is bathochromically shifted on addition of quinones, e.g., 1,4-benzoquinone (BQ), with a corresponding shift of the fluorescence band. This is due to a complex formation of zinc chlorins induced by BQs and subsequent rearrangement. The time-resolved absorption spectra after laser pulse excitation show triplet quenching of the pigments by BQ and other quinones via electron transfer. The effects of electron transfer to noncovalently bound BQs were also studied with de novo synthesized peptides, into which ZnCe6 and ZnPheida were incorporated as model systems for the primary steps of photosynthetic reaction centers. Whereas the photophysical properties are similar to those of the unbound zinc chlorins, no BQ-mediated complex formation was observed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号