首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
连续冷却铸造5083铝合金板较大塑性变形量冷轧后的组织、织构及性能与再结晶处理工艺关系的研究有限。对冷轧压下量约为91.5%的CC5083与CC5182铝合金板分别进行室温入箱式电炉、随炉不限速升温到不同温度退火2 h和分别进行直接入不同温度盐炉退火30 min、出炉水冷至室温后,采用偏光金相显微镜观察组织、采用X射线衍射检测织构,进一步对比研究较大压下量冷轧后退火工艺与再结晶组织和织构关系。结果显示:(1)电炉退火CC5083铝合金板的再结晶开始及晶粒长大温度为343 ℃,晶粒长大后形状为长条状(创新点);盐炉退火CC5083铝合金板的再结晶开始温度为343 ℃;二者再结晶完成温度都为371 ℃。(2)CC5182铝合金板分别在电炉与盐炉454 ℃以上退火,晶粒开始显著长大;电炉退火与盐炉退火CC5083铝合金板再结晶开始温度分别高于电炉与盐炉退火的CC5182铝合金板,盐炉退火CC5083铝合金板再结晶晶粒长大温度高于另外三种方式退火;CC5182铝合金板盐炉退火再结晶晶粒长大温度高于电炉退火的。CC5083和CC5182铝合金冷轧板表层再结晶及再结晶晶粒长大温度明显高于内层的(创新点)。(3)四种方式退火再结晶晶粒长大温度及相同温度退火时织构转变程度有差异(创新点);退火过程中织构检测结果与金相组织观察结果反映的再结晶进程不很一致。  相似文献   

2.
通过分子动力学对液态Cu10Ag90合金在四种冷速条件下进行快速凝固模拟。结果显示,1 × 1010和1 × 1011 K/s下系统的平均原子能量分别在750 K和650 K发生突变,冷速越低最终平均原子能量越低;1 × 1012和1 × 1013 K/s的双体分布函数第二峰出现分裂,表明结构处于非晶态。从1 × 1011K/s开始出现尖锐小峰,表明此冷速开始出现晶化现象,1 × 1010 K/s下分裂的峰更加尖锐明显,说明体系形成结晶度较高的晶体结构;1 × 1010 和1 × 1011 K/s下系统凝固后晶体结构含量由高到低分别为fcc, hcp, bcc。冷速越低晶体结构数目越多,系统的有序度更高,结构熵越低。  相似文献   

3.
The Li-ion conductivity is a sensitive function of the composition and the microstructure for the perovskite-type Li-ion conductor. In this study, the effect of sintering temperature and thus microstructure and Li loss on the grain boundary conductivity of Li-conducting La0.57LixTiO3 (x=0.3 and 0.35) were studied. The grain and the grain boundary conductivity were obtained from the impedance patterns. As the sintering temperature increased from 1100°C to 1350°C, the Li content decreased due to the evaporation of Li during sintering. The samples were nearly fully dense after sintering at 1200°C or above. The grain boundary conductivity increased rapidly with sintering temperature due to the increasing grain size. When the grain conductivity was nearly independent on the sintering condition, the grain boundary conductivity change was mostly explained by the microstructural change. Some possible reasons for the low grain boundary conductivity was discussed.  相似文献   

4.
In this paper, attention in focused on the nanostructured magnesium films for hydrogen storage. It is shown that 2 μm thick Mg film is transformed into MgH2 film under high-flux and fluence hydrogen plasma immersion ion implantation at 450 K for 15 min. All hydrogen desorbs at temperature about 530 K, which corresponds to the decomposition of MgH2 → Mg + H2↑. The macroscopic and microscopic observations show that magnesium film undergoes a high deformation and restructuring during hydrogenation-dehydrogenation reaction. The suggested hydrogenation model is based upon the incorporation of excess of hydrogen atoms in grain boundaries of nanocrystalline Mg film driven by the increase in surface chemical potential associated with the implantation flux. The results provide new aspects of hydriding of thin nanocrystalline film materials under highly non-equalibrium conditions on the surface.  相似文献   

5.
Al and Al–SiC composites coatings were prepared by oxyacetylene flame spraying on ZE41 magnesium alloy substrates. Coatings with controlled reinforcement rate of up to 23 vol.% were obtained by spraying mixtures containing aluminium powder with up to 50 vol.% SiC particles. The coatings were sprayed on the magnesium alloy with minor degradation of its microstructure or mechanical properties. The coatings were compacted to improve their microstructure and protective behaviour. The wear behaviour of these coatings has been tested using the pin-on-disk technique and the reinforced coatings provided 85% more wear resistance than uncoated ZE41 and 400% more than pure Al coatings.  相似文献   

6.
以Mg-Al-Mn合金为研究对象,通过微合金化的方法研究了Ca、Sr对汽车用耐热镁合金常温力学性能与高温力学性能的影响,并分析了合金在固溶时效热处理后的时效硬化特征,观察了合金铸态、固溶态和时效态下的显微组织演变。  相似文献   

7.
8.
Abstract

The grain boundaries (GBs) present in polycrystalline materials are important with respect to materials behaviour and properties. During the transient stage of oxidation, the higher GB diffusivity results in heterogeneous oxidation structures in the form of oxide ridges that emerge along the alloy GBs. In an attempt to delve into the more fundamental aspects of the GBs, such as GB energy, the size of the oxide ridges was quantitatively measured by atomic force microscopy on the post oxidation surface of a Fe-22 wt % Cr alloy after an oxidation exposure at 800 °C in dry air. The GB diffusivity was calculated utilising the ridge size data and the relationship between the GB diffusivity and the GB characteristics was determined. Furthermore, the GB energy was calculated from the GB diffusivity data, also to make comparison with the data available in the literature. The absolute value of the calculated GB energy was quite close to the values reported in the literature. However, compared to the extremely low temperature (0 K) data-set from the literature, the data-set obtained from this study showed much less spread. The smaller variation range may be attributed to the higher temperature condition (1073 K) in this study.  相似文献   

9.
The mechanical properties of bicrystalline graphene nanoribbons with various tilt grain boundaries (GBs) which typically consist of repeating pentagon–heptagon ring defects are investigated based on the method of molecular structural mechanics. The GB models are constructed via the theory of disclinations in crystals, and the elastic properties and ultimate strength of bicrystalline graphene nanoribbons are calculated under uniaxial tensile loads in perpendicular and parallel directions to grain boundaries. The dependence of mechanical properties is analyzed on the chirality and misorientation angles of graphene nanoribbons, and the experimental phenomena that Young's modulus and ultimate strength of bicrystalline graphene nanoribbons can either increase or decrease with the grain boundary angles are further verified and discussed. In addition, the influence of GB on the size effects of graphene Young's modulus is also analyzed.  相似文献   

10.
Several approaches are considered to determine the temperature effect on the absorption coefficient within a correlated k-distribution method. Taking in the 610- region for example, the absorption coefficients and atmospheric cooling rates calculated using these approaches are compared with line-by-line integration. It is emphasized in this paper by numerical calculation that the effect of pressure on absorption coefficient is related to temperature and vise versa; the larger the pressure, the larger the effect of temperature on absorption coefficient. Results show that the temperature effect must be considered in radiative calculations although its effect on the absorption coefficient is much smaller than that of pressure.  相似文献   

11.
The effect of Sn solutes segregating into grain boundaries on the steady-state creep characteristics was studied for wires of a Cu-10 wt % Sn alloy having various grain diameters,d. The creep tests were performed for samples in the-phase in the temperature range: (0·5–0·58 Tm). The steady state creep rate, s, was found to vary linearly withd. The variation in the stress sensitivity parameter,m, was found to be much less appreciable for large grains (>50m). Activation energy calculation showed that two competitive mechanisms are operating for creep deformation, namely, dislocation climb and viscous motion of matrix dislocations due to dragging of Sn atmosphere. A value of 6·74 kJ/mol was obtained for the binding energy between a Sn atom and the dislocation, while the binding energy between a vacancy and the Sn atom was found to be 33·71 kJ/mol.  相似文献   

12.
To reduce the core loss of electrical steel the vacuum arc ion plating technique has been used to deposit titanium nitride (TiN) layers on highly grain oriented electrical steel sheets. The layer thickness, the stresses of layers and coated sheets and the achieved reduction in core losses have been measured as functions of coating duration and applied bias voltage. Well adhered layers with high compressive stress up to 6.8 GPa have been produced. With increasing bias voltage the layer thickness decreases and the intrinsic stress of the layers increase. A further increase of bias voltage leads to a drop in stress due to thermal relaxation. In general, the tensile stress of the coated sheets rises with increasing layer thickness while the core loss of the coated material decreases with increasing tensile stress of the steel sheet and increasing bias voltage. The highest reduction of core loss has been found to be 28% (from P1.7=0.86 W/kg for commercially coated HGO electrical steel sheet with glass film to 0.62 W/kg for TiN coated material) and is due to the reduction of excess loss only.  相似文献   

13.
The influence of the atomic order on the magnetic properties has been analyzed in a polycrystalline Ni49.5Mn28.5Ga22 ferromagnetic shape memory alloy prepared by arc melting under Ar atmosphere. Different thermal treatments have been performed to modify the order degree of the alloy. The effect of the different thermal treatments on the magnetic and structural characteristics has been analyzed by superconducting quantum interference device (SQUID) and differential scanning calorimetry (DSC) measurements. The magnetic and structural properties of the alloys are modified as a consequence of the atomic order change. The martensitic transformation temperatures increase as long as the order degree increases. On the other side, the Curie temperature and magnetization saturation also reflect the order degree of the alloy but seems to be linked to the particular order of the Mn sub-lattice.  相似文献   

14.
It was found that when electrolessly deposited thin Pd and Pd–Cu membranes were exposed to air at temperatures above 350 °C, their H2 flux increased substantially immediately after the air exposure, then decreased to a new steady-state value. While this was a quasi-reversible change for the H2 flux, the flux of insoluble species, such as N2, irreversibly increased with every air exposure but by a much smaller extent. The extent of these changes was found to be dependent on the exposure time and the temperature of the tests. Thus, we decided to investigate the effect of gas exposures on the properties of these materials.

Palladium and palladium–copper films, prepared by electroless deposition on ceramic supports, and commercial foils were exposed to air, hydrogen and helium at 500 and 900 °C for times varying from 1 h to 1 week with the objective of determining the effect of the different exposure conditions on the surface morphology, the flux of different penetrants and the crystalline structure of the materials. Atomic force microscopy (AFM) and X-ray diffraction (XRD) were used to study the changes occurring in the films under those conditions.

It was observed that the exposure of both the electroless films and the foils to hydrogen and air markedly modified their surface morphology. The hydrogen exposure tended to smooth the surface features whereas the oxygen exposure created new surface features such holes and large peaks. Additionally it was found that the air exposure produced some oxidation of the film to create PdO.

These results suggested that a common hypothesis stating that air oxidation just cleans the surface of the membrane might not be sufficient to explain all of those changes. A contributing effect of air exposure may be the increase in surface area due to the formation of palladium oxide. However, the extent of the surface area increase was insufficient to explain the increase in steady-state H2 flux.  相似文献   


15.
Sodium nitrite has been used as an accelerating agent in phosphating bath to improve its properties. However, it is well known that sodium nitrite is a carcinogenic component in phosphating sludge. In this study, it has been aimed to replace sodium nitrite by an environmentally friendly accelerating agent. To this end, sodium dodecyl sulfate (SDS) was used in phosphating bath to improve the phosphate coating formation on an AZ31 magnesium alloy. The effect of SDS/sodium nitrite ratio on the phosphated samples properties was also studied. Using field emission scanning electron microscope (FE-SEM), X-ray diffraction (XRD), direct current (DC) polarization and electrochemical impedance spectroscopy (EIS) the properties of phosphated magnesium samples were studied.Results showed uniform phosphate coating formation on the magnesium sample mostly in hopeite phase composition. In addition, a denser and less permeable coating can be obtained at these conditions. The corrosion resistance of the phosphated samples was superiorly improved using higher SDS concentration in the phosphating bath.  相似文献   

16.
The properties of the grain boundaries (GBs) are of significant importance in high-Tc cuprates. Most large scale applications of cuprate superconductors involve usage of sintered compounds. The critical current density and the ability to trap high magnetic flux inside the sample depend largely on the quality of the GBs. Zn has the ability to pin vortices but it also degrades superconductivity. In this study we have investigated the effect of Zn impurity on the intergrain coupling properties in high-quality La2−xSrxCu1−yZnyO4 sintered samples with different hole concentrations, p (≡x), over a wide range of Zn contents (y) using field-dependent AC susceptibility (ACS) measurements. The ACS results enabled us to determine the superconducting transition temperature Tc, and the temperature Tgcp, at which the randomly oriented superconducting grains become coupled as a function of hole and disorder contents. We have analyzed the behavior of the GBs from the systematic evolution of the values of Tgcp(py), Tc(py), and from the contribution to the field-dependent ACS signal coming from the intergrain shielding current. Zn suppresses both Tc and Tgcp in a similar fashion. The hole content and the carrier localization due to Zn substitution seem to have significant effect on the coupling properties of the GBs. We have discussed the possible implications of these findings in detail in this article.  相似文献   

17.
GaN nanowires doped with Mg have been synthesized at different temperature through ammoniating the magnetron-sputtered Ga2O3/Au layered films deposited on Si substrates. X-ray diffraction (XRD), Scanning electron microscope (SEM), high-resolution TEM (HRTEM) equipped with an energy-dispersive X-ray (EDX) spectrometer and photoluminescence (PL) were used to analyze the structure, morphology, composition and optical properties of the as-synthesized sample. The results show that the ammoniating temperature has a great impact on the properties of GaN. The optimally ammoniating temperature of Ga2O3/Au layer is 900 C for the growth of GaN nanowires(NWs). The band gap emission (358 nm) relative to that (370 nm) of undoped GaN NWs has an apparent blueshift, which can be ascribed to the doping of Mg. Finally, the growth mechanism is also briefly discussed.  相似文献   

18.
Recent studies have shown the effects of a post sintering heat treatment at 1000 °C for 24 h on the microstructure and magnetic properties of Pr-Fe-B/Nd-Fe-B magnets based on Nd16Fe76B8 and Pr16Fe76B8. In an attempt to understand the influence of environmental factors, an investigation into the effects of annealing under different degrees of vacuum for both types of sintered magnets has been carried out. The effect of annealing the Pr-Fe-B magnets at 1000 °C for 24 h resulted in a general increase in the magnetic properties, especially the intrinsic coercivity, although the degree of improvement appeared to be dependent on the initial annealing conditions (ambient pressure). Oxygen analysis of sintered and annealed magnets indicates a change in the nature of the grain boundary phases after the annealing treatment. The effect of annealing the Nd-Fe-B magnets at 1000 °C for 24 h resulted in a general decrease in the magnetic properties, especially the intrinsic coercivity.  相似文献   

19.
Write‐once–read‐many‐times memory (WORM) devices were fabricated using Ti/Au and Au as top contacts on ZnO thin films on Si. Electrical characterization shows that both types of WORM devices have large resistance OFF/ON ratio (R ratio), small resistance distribution range, long retention and good endurance. WORM devices with Au top contact have better performance of higher R ratio because of a larger work function of Au compared to Ti.

  相似文献   


20.
By means of the Furnstahl, Serot and Tang's model, the effects of surface tension and Coulomb interaction on the liquid–gas phase transition for finite nuclei are investigated. A limit pressure plim above which the liquid–gas phase transition cannot take place has been found. It is found that comparing to the Coulomb interaction, the contribution of surface tension is dominate in low temperature regions. The binodal surface is also addressed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号