首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到5条相似文献,搜索用时 0 毫秒
1.
Because of the influence of hydrodynamic forces, the capillary pressure measured at static equilibrium may be different from that which pertains during flow. If such is the case, it may not be permissible to use steady-state relative permeabilities to predict unsteady-state flow. In this paper, the idea that the total flux of a given phase may be partitioned into several individual fluxes, together with a new pressure difference equation, is used to explore the possible impact that the hydrodynamic forces might have on capillary pressure and, as a consequence, relative permeability. This exploration reveals that, provided the pressure difference equation is implemented properly, capillarity has no impact on the relative permeability curves for the homogeneous, water-wet porous media considered. Moreover, it is demonstrated that, if the hydrodynamic effects are neglected, very little error is introduced into the analysis.  相似文献   

2.
The effect of pore-structure upon two-phase relative permeability and capillary pressure of strongly-wetting systems at low capillary number is simulated. A pore-level model consisting of a network of pore-bodies interconnected by pore-throats is used to calculate scanning loops of hysteresis between primary drainage, imbibition and secondary drainage. The pore-body to pore-throat aspect ratio strongly influences the pattern of hysteresis. Changes in the patterns of hysteresis often attributed to consolidation can be understood in terms of changes in aspect ratio. Correlation between the sizes of neighboring pore-throats affects the shape of the relative permeability curves, while the width and shape of the pore-size distribution have only a minor influence.  相似文献   

3.
Naturally fractured reservoirs contain about 25–30% of the world supply of oil. In these reservoirs, fractures are the dominant flow path. Therefore, a good understanding of transfer parameters such as relative permeability as well as flow regimes occurring in a fracture plays an important role in developing and improving oil production from such complex systems. However, in contrast with gas–liquid flow in a single fracture, the flow of heavy oil and water has received less attention. In this research, a Hele-Shaw apparatus was built to study the flow of water in presence of heavy oil and display different flow patterns under different flow rates and analyze the effect of fracture orientations on relative permeability curves as well as flow regimes. The phase flow rates versus phase saturation results were converted to experimental relative permeability curves. The results of the experiments demonstrate that, depending on fracture and flow orientation, there could be a significant interference between the phases flowing through the fracture. The results also reveal that both phases can flow in both continuous and discontinuous forms. The relative permeability curves show that the oil–water relative permeability not only depends on fluid saturations and flow patterns but also fracture orientation.  相似文献   

4.
In the first part of this work (Dong et al., Transport Porous Media, 59, 1–18, 2005), an interacting capillary bundle model was developed for analysing immiscible displacement processes in porous media. In this paper, the second part of the work, the model is applied to analyse the fluid dynamics of immiscible displacements. The analysis includes: (1) free spontaneous imbibition, (2) the effects of injection rate and oil–water viscosity ratio on the displacement interface profile, and (3) the effect of oil–water viscosity ratio on the relative permeability curves. Analysis of a non-interacting tube bundle model is also presented for comparison. Because pressure equilibration between the capillaries is stipulated in the interacting capillary model, it is able to reproduce the behaviour of immiscible displacement observed in porous media which cannot be modelled by using non-interacting tube bundle models.  相似文献   

5.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号