首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
We consider a class of theories in which neutrino masses depend significantly on environment, as a result of interactions with the dark sector. Such theories of mass varying neutrinos were recently introduced to explain the origin of the cosmological dark energy density and why its magnitude is apparently coincidental with that of neutrino mass splittings. In this Letter we argue that in such theories neutrinos can exhibit different masses in matter and in vacuum, dramatically affecting neutrino oscillations. As an example of modifications to the standard picture, we consider simple models that may simultaneously account for the LSND anomaly, KamLAND, K2K, and studies of solar and atmospheric neutrinos, while providing motivation to continue to search for neutrino oscillations in short baseline experiments such as BooNE.  相似文献   

2.
In this paper, we discuss a possibility of studying properties of dark energy in long baseline neutrino oscillation experiments. We consider two types of models of neutrino dark energy. For one type of models the scalar field is taken to be quintessence-like and for the other phantom-like. In these models the scalar fields couple to the neutrinos to give rise to spatially varying neutrino masses. We will show that the two types of models predict different behaviors of the spatial variation of the neutrino masses inside the Earth and consequently result in different signals in long baseline neutrino oscillation experiments.  相似文献   

3.
We propose a new solution to the origin of dark energy. We suggest that it was created dynamically from the condensate of a singlet neutrino at a late epoch of the early Universe through its effective self-interaction. This singlet neutrino is also the Dirac partner of one of the three observed neutrinos, hence dark energy is related to neutrino mass. The onset of this condensate formation in the early Universe is also related to matter density and offers an explanation of the coincidence problem of why dark energy (70%) and total matter (30%) are comparable at the present time. We demonstrate this idea in a model of neutrino mass with (right-handed) singlet neutrinos and a singlet scalar.  相似文献   

4.
In this paper, we discuss a possibility of studying properties of dark energy in long baseline neutrino oscillation experiments. We consider two types of models of neutrino dark energy. For one type of models the scalar field is taken to be quintessence-like and for the other phantom-like. In these models the scalar fields couple to the neutrinos to give rise to spatially varying neutrino masses. We will show that the two types of models predict different behaviors of the spatial variation of the neutrino masses inside the Earth and consequently result in different signals in long baseline neutrino oscillation experiments.  相似文献   

5.
We explore the dynamics of neutrinos in a vacuum dominated cosmology. First we show that such a geometry will induce a phase change in the eigenstates of a massive neutrino and we calculate the phase change. We also calculate the delay in the neutrino flight times in this geometry. Applying our results to the presently observed background vacuum energy density, we find that for neutrino sources further than 1.5 Gpc away both effects become non-trivial, being of the order of the standard relativistic corrections. Such sources are within the observable Hubble Deep Field. The results which are theoretically interesting are also potentially useful, in the future, as detection techniques improve. For example such effects on neutrinos from distant sources like supernovae could be used, in an independent method alternative to standard candles, to constrain the dark energy density and the deceleration parameter. The discussion is extended to investigate Caianiello's inertial or maximal acceleration (MA) effects of such a vacuum dominated spacetime on neutrino oscillations. Assuming that the MA phenomenon exists, we find that its form as generated by the presently observed vacuum energy density would still have little or no measurable effect on neutrino phase evolution, for neutrinos in the energy range of a few eV.  相似文献   

6.
We study upward muon flux at neutrino detectors such as Super-Kamiokande resulting from high-energy neutrinos produced by the dark matter annihilation/decay at the Galactic center. In particular, we distinguish showering and non-showering muons as their energy loss processes inside the detector, and show that this information is useful for discriminating dark matter models.  相似文献   

7.
At present, cosmology provides the nominally strongest constraint on the masses of standard model neutrinos. However, this constraint is extremely dependent on the nature of the dark energy component of the Universe. When the dark energy equation of state parameter is taken as a free (but constant) parameter, the neutrino mass bound is sigma m(v) < or = 1.48 eV (95% C.L.), compared with sigma m(v) < or = 0.65 eV (95% C.L.) in the standard model where the dark energy is in the form of a cosmological constant. This has important consequences for future experiments aimed at the direct measurement of neutrino masses. We also discuss prospects for future cosmological measurements of neutrino masses.  相似文献   

8.
Cosmological consequences of a coupling between massive neutrinos and dark energy are investigated. In such models, the neutrino mass is a function of a scalar field, which plays the role of dark energy. The evolution of the background and cosmological perturbations are discussed. We find that mass-varying neutrinos can leave a significant imprint on the anisotropies in the cosmic microwave background and even lead to a reduction of power on large angular scales.  相似文献   

9.
The origin of the hot phase of the early universe remains so far an unsolved puzzle. A viable option is entropy production through the decays of heavy Majorana neutrinos whose lifetimes determine the initial temperature. We show that baryogenesis and the production of dark matter are natural by-products of this mechanism. As is well known, the cosmological baryon asymmetry can be accounted for by leptogenesis for characteristic neutrino mass parameters. We find that thermal gravitino production then automatically yields the observed amount of dark matter, for the gravitino as the lightest superparticle and typical gluino masses. As an example, we consider the production of heavy Majorana neutrinos in the course of tachyonic preheating associated with spontaneous BL breaking. A quantitative analysis leads to constraints on the superparticle masses in terms of neutrino masses: For a light neutrino mass of 10−5 eV the gravitino mass can be as small as 200 MeV, whereas a lower neutrino mass bound of 0.01 eV implies a lower bound of 9 GeV on the gravitino mass. The measurement of a light neutrino mass of 0.1 eV would rule out heavy neutrino decays as the origin of entropy, visible and dark matter.  相似文献   

10.
We consider the neutrino flux from the decay of long-lived big-bang particles. The red-shift ztr at which the neutrino transparency of the universe sets in is calculated as a function of neutrino energy: ztr 1 × 105 for TeV neutrinos and ztr 3 × 106 for 10 MeV neutrinos. One might expect the production of detectable neutrino flux at z ztr, but, as demonstrated in this paper, the various upper limits, most notably due to nucleosynthesis and diffuse X- and gamma-rays, preclude this possibility. Unless the particle decay is strongly dominated by the pure neutrino channel, observable neutrino flux can be produced only at the current epoch, corresponding to red-shift z ≈ 0. For the thermal relics which annihilate through the gauge bosons of SU(3)×SU(2)×U(1) group, the neutrino flux can be marginally detectable at 0.1 < Ev < 10 TeV. As an example of non-thermal relics we consider gravitinos. If gravitinos are the lightest supersymmetric particles (LSP) they can produce the detectable neutrino flux in the form of a neutrino line with energy , where MG is the gravitino mass. The flux strongly depends on the mechanisms of R-parity violation. It is shown that heavy gravitinos (MG 100 GeV) can make up the dark matter in the universe.  相似文献   

11.
《Nuclear Physics B》1998,523(3):597-610
It has been known that there are two schemes in the framework of three flavor neutrinos to accommodate the global features of the hot dark matter neutrinos, the solar neutrino deficit and the atmospheric neutrino anomaly in a manner consistent with terreatrial neutrino experiments, i.e., hierarchical mass neutrinos and almost degenerate neutrinos. We deminstrate that the recent result by the CHOOZ experiment excludes the scheme of hierarchical neutrinos. We also point out in the scheme of almost degenerate neutrinos that if neutrinos are Majorana particles then the double β decay experiments must see positive signals on their way to reach a limit more stringent than the present one by a factor of 5.  相似文献   

12.
Kilometer-scale neutrino detectors such as IceCube are discovery instruments covering nuclear and particle physics, cosmology and astronomy. Examples of their multidisciplinary missions include the search for the particle nature of dark matter and for additional small dimensions of space. In the end, their conceptual design is very much anchored to the observational fact that Nature produces protons and photons with energies in excess of 1020 eV and 1013 eV, respectively. The puzzle of where and how Nature accelerates the highest energy cosmic particles is unresolved almost a century after their discovery. The cosmic ray connection sets the scale of cosmic neutrino fluxes. In this context, we discuss the first results of the completed AMANDA detector and the science reach of its extension, IceCube. Similar experiments are under construction in the Mediterranean. Neutrino astronomy is also expanding in new directions with efforts to detect air showers, acoustic and radio signals initiated by super-EeV neutrinos. The outline of this review is as follows:
  • Introduction
  • Why kilometer-scale detectors?
  • Cosmic neutrinos associated with the highest energy cosmic rays
  • High energy neutrino telescopes: methodologies of neutrino detection
  • High energy neutrino telescopes: status
  •   相似文献   

    13.
    We compute the energy spectrum of high-energy (0.1–10 GeV) neutrinos produced by the annihilation of supersymmetric (SUSY) cold dark matter trapped in the sun. We compare this spectrum to the spectrum of atmospheric neutrinos and find that in the direction of the sun the solar flux of neutrinos can exceed the atmospheric background for neutrino energies Eν 1 GeV, and are as much as a factor 30 above background for energies Eν few GeV. We discuss these signatures for standard SUSY relics as well as for superstring relics.  相似文献   

    14.
    In this paper,we make a comparison for the impacts of smooth dynamical dark energy,modified gravity,and interacting dark energy on the cosmological constraints on the total mass of active neutrinos.For definiteness,we consider theΛCDM model,the w CDM model,the f(R)model,and two typical interacting vacuum energy models,i.e.,the IΛCDM1 model with Q=βHρc and the IΛCDM2 model with Q=βHρΛ.In the cosmological fits,we use the Planck 2015 temperature and polarization data,in combination with other low-redshift observations including the baryon acoustic oscillations,the type Ia supernovae,the Hubble constant measurement,and the large-scale structure observations,such as the weak lensing as well as the redshift-space distortions.Besides,the Planck lensing measurement is also employed in this work.We find that,the w CDM model favors a higher upper limit on the neutrino mass compared to theΛCDM model,while the upper limit in the f(R)model is similar with that in theΛCDM model.For the interacting vacuum energy models,the IΛCDM1 model favors a higher upper limit on neutrino mass,while the IΛCDM2 model favors an identical neutrino mass with the case ofΛCDM.  相似文献   

    15.
    We adapt the type II seesaw mechanism to the framework of the 3-3-1 model with right-handed neutrinos. We emphasize that the mechanism is capable of generating small masses for the left-handed and right-handed neutrinos and the structure of the model allows that both masses arise from the same Yukawa coupling. For typical values of the free parameters of the model we may obtain at least one right-handed neutrino with mass in the keV range. Right-handed neutrino with mass in this range is a viable candidate for the warm component of the dark matter existent in the universe.  相似文献   

    16.
    H. Ps 《Annalen der Physik》2002,11(8):551-572
    The evidence for non‐vanishing neutrino masses from solar and atmospheric neutrinos provides the first solid hint towards physics beyond the standard model. A full reconstruction of the neutrino spectrum may well provide a key to the theoretical structures underlying the standard model such as supersymmetry, grand unification or extra space dimensions. In this article we discuss the impact of absolute neutrinos masses on physics beyond the standard model. We review the information obtained from neutrino oscillation data and discuss the prospects of the crucial determination of the absolute neutrino mass scale, as well as the intriguing connection with the Z‐burst model for extreme‐energy cosmic rays.  相似文献   

    17.
    陈菊华  王永久 《中国物理 B》2010,19(1):10401-010401
    In this paper we investigate the evolution of the cosmology model with dark energy interacting with massive neutrinos and dark matter. Using the numerical method to investigate the dynamical system, we find that the stronger the interaction between dark energy and dark matter, the lower the ratio of dark matter in the universe is; also, the stronger the interaction between dark energy and massive neutrinos, the lower the ratio of massive neutrinos in the universe is. On the other hand, the interaction between dark energy and dark matter or massive neutrinos has an effect on disturbing the universe's acceleration; we also find that our universe is still accelerating.  相似文献   

    18.
    Possible hints on neutrino masses are reviewed. They come from the deficits in the solar as well as atmospheric neutrinos and from need of a significant amount of hot component in the dark matter of the universe. The role of three generation mixing in simultaneously solving the solar and atmospheric neutrino problem is discussed. All the three hints can be reconciled if three neutrinos are almost degenerate. Models for neutrino masses and mixing implied by the above hints are briefly discussed.  相似文献   

    19.
    We study magnetic dipole moments of right-handed neutrinos in a keV neutrino dark matter model. This model is a simple extension of the standard model with only right-handed neutrinos and a pair of charged particles added. One of the right-handed neutrinos is the candidate of dark matter with a keV mass. Some bounds on the dark matter magnetic dipole moment and model parameters are obtained from cosmological observations.  相似文献   

    20.
    The first string of the neoteric high-energy neutrino telescope IceCube successfully began operating in January 2005. It is anticipated that, upon completion, the new detector will vastly increase the sensitivity and extend the reach of AMANDA to higher energies. A discussion of the IceCube’s discovery potential for extraterrestrial neutrinos, together with the prospects of new physics derived from the ongoing AMANDA research, will be the focus of this paper. Preliminary results of the first antarctic high-energy neutrino telescope AMANDA searching in the muon-neutrino channel for localized and diffuse excess of extraterrestrial neutrinos will be reviewed using data collected between 2000 and 2003. Neutrino flux limits obtained with the all-flavor dedicated ultrahigh energy and cascade analyses will be described. A first neutrino spectrum above 1 TeV in agreement with atmospheric neutrino flux expectations and no extraterrestrial contribution will be presented, followed by a discussion of a limit for neutralino cold dark matter candidates annihilating in the center of the Sun. on behalf of the IceCube Collaboration The text was submitted by the author in English.  相似文献   

    设为首页 | 免责声明 | 关于勤云 | 加入收藏

    Copyright©北京勤云科技发展有限公司  京ICP备09084417号