首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 754 毫秒
1.
It is of great significance to study the thermal oxidation process to understand the reaction mechanism of aluminum particle and further its applications in propellants. The physical and chemical properties of micron-aluminum particle were evaluated by scanning electron microscopy, laser particle size analyzer, X-ray diffractometer and inductively coupled plasma atomic emission spectrometer. The thermal oxidation characteristics of the sample were studied by thermal analyzer. The experimental results showed that the initial oxide thickness of the sample was about 3.96 nm, and the calculated values of the specific surface area and the active aluminum content obtained by the established mathematical model were in good agreement with the measured values. The thermal oxidation process of the sample was divided into three stages. When the temperature rose to 1100 °C, the thermal oxidation efficiency of the sample reached 98.55%. With the increase in treatment temperature, dramatic crystalline changes occurred on the surface of the sample: amorphous alumina—γ-Al2O3, α-Al2O3, and the oxide layer thickness increased from 3.96 to 5.72 nm and 31.56 nm up to 320.15 nm. When the temperature reached 700 °C, the outer surface of the oxide layer contained a small amount of α-Al2O3, while the interior consisted of a large amount of γ-Al2O3, indicating that the conversion of γ-Al2O3 to α-Al2O3 occurred from the inside out.  相似文献   

2.
Effect of the preparation conditions of aluminum oxide on its catalytic activity and stability in the course of vapor-phase dehydration of glycerol to give acrolein was studied. The conditions were determined in which γ-Al2O3 is prepared so that the maximum selectivity of acrolein formation (~60%) and glycerol conversion (~80%) is in 10 h. The results of the study suggest that systems based on γ-Al2O3 are the most promising catalysts for the process under consideration.  相似文献   

3.
This paper presents structural and mechanical characterizations of microporous silica membranes for gas separation. The membrane separative layer is made of microporous silica–B2O3 produced via a sol–gel process. This layer of about 200 nm of thickness is deposited on the internal surface of a tubular asymmetric γ-alumina/α-alumina support. FTIR and Raman analyses indicate the presence of the boron in the silica net and the above methods in conjunction with 11B MAS NMR analyses of the samples indicate that boron is located mainly in the tetrahedral framework position. Such membranes present interesting gas separation properties at temperatures up to 500 °C and transmembrane pressures lower than 8 bar. He permeance values close to 10−10 kmol m−2 s−1 Pa−1 are obtained, associated with ideal selectivity α(He/CO2) which can reach 55. Mechanical properties of separative silica-modified layers are measured by nanoindentation and the coefficient of thermal expansion is obtained from pure material.  相似文献   

4.
Using a new experimental technique, “Continuous Elution Method”, the desorption behavior of polystyrene(PS) and polystyrene (PS-X) functionalized by a terminal iminium ion (-X) from α-Al2O3 and γ-Al2O3 surface were investigated, and found that PS-X is forming a terminally adsorbed polymer layer on α-Al2O3, surface. Furthermore, it was found that the adsorption force of terminally adsorbed polymer is balanced with the desorption force which is contributed from the osmotic pressure in the adsorption layer. Based on this concept, the adsorption energy of the end-functionalized polystyrene terminally adsorbed on the α-Al2O3, surface was evaluated to be 4.2 ˜4.3 kT.  相似文献   

5.
The metastable forms of aluminum oxide that exist in the range of 300–800°C are characterized; differences in the microstructures of homogeneous γ-, η-, and χ-Al2O3 are demonstrated; and the acid-base properties of the above modifications are compared. The catalytic properties of aluminum oxide in ethanol dehydration and propionitrile ammonolysis were studied. It was found that an increased surface concentration of Lewis acid sites, including strong acid sites (ν(CO) = 2237 cm?1), is required for preparing an effective catalyst for the dehydration of ethanol, whereas the rate of propionitrile conversion increased proportionally to the surface concentration of Brønsted acid sites. γ-Aluminum oxide was used to prepare catalysts for carbon monoxide oxidation. It was found that the supporting of Pd on γ-Al2O3 did not change the support structure. Palladium on the surface of γ-Al2O3-550 (T calcin = 550°C, S BET = 300 m2/g) occurred as single particles (2–3 nm) and aggregates (~100 nm). The single particles were almost completely covered with a layer of aluminum oxide to form core-shell structures. According to XPS data, they were in atypical states (BE(Pd 3d 5/2) = 336.0 and 338.0 eV), which were not reduced by hydrogen in the range of 15–450°C and were resistant to the action of the reaction mixture. Palladium on the surface of γ-Al2O3-800 (S BET = 160 m2/g) was in the states Pd0 and PdO, which are typical of Pd/Al2O3, and the proportions of these states can change under the action of the reaction mixture. An increase in the T calcin of the Pd/Al2O3(800)-450 catalyst from 450 to 800 → 1000 → 1200°C led to the agglomeration of palladium particles and to an increase in the temperature of 50% CO conversion from 145 to 152 → 169 → 189°C, respectively. α-Aluminum oxide was used in the preparation of an effective Mn-Bi-O/α-Al2O3 supported catalyst for the synthesis of nitrous oxide by the oxidation of ammonia with oxygen: the NH3 conversion was 95–97% at 84.4% N2O selectivity.  相似文献   

6.
The rate of ZnAl2O4 formation was measured for η-, γ-; and α- Al2O3 in order to distinguish the reactivity of them. The reactivity decreased as follows: η- > γ- > α-Al2O3. The reaction rate fitted to Jander's equation and the activation energies calculated were 33, 47 and 113 Kcal/mol for η-, γ- and α-Al2O3 systems, respectively. These differences are explained by an assumption that η- and γ-Al2O3 resulted in a ZnAl2O4 with imperfect spinel structure, but α-Al2O3 gave the perfect spinel structure. This assumption is based on the theoretical consideration of the activation energy needed for the diffusion-controlled reaction and date of lattice constant of each ZnAl2O4 obtained from three aluminas. The fact that η-Al2O3 shows very high reactivity compared with that of γ-Al2O3 was found to be explained on the basis of Jander's equation, a comparison of specific surface area and the defect structures of the aluminas.  相似文献   

7.
The formation of Pd–Ag nanoparticles deposited from the heterobimetallic acetate complex PdAg2(OAc)4(HOAc)4 on α-Al2O3, γ-Al2O3, and MgAl2O4 has been investigated by high-resolution trans-mission electron microscopy, temperature-programmed reduction, and IR spectroscopy of adsorbed CO. The reduction of PdAg2(OAc)4(HOAc)4 supported on γ-Al2O3 and MgAl2O4 takes place in two steps (at 15–245 and 290–550°C) and yields Pd–Ag particles whose average size is 6–7 nm. The reduction of the Pd–Ag catalyst supported on α-Al2O3 occurs in a much narrower temperature range (15–200°C) and yields larger nanoparticles (~10–20 nm). The formation of Pd–Ag alloy nanoparticles in all of the samples is demonstrated by IR spectroscopy of adsorbed CO, which indicates a marked weakening of the absorption band of the bridged form of adsorbed carbon monoxide and a >30-cm–1 bathochromic shift of the linear adsorbed CO band. IR spectroscopic data for PdAg2/α-Al2O3 suggest that Pd in this sample occurs as isolated atoms on the surface of bimetallic nanoparticles, as is indicated by the almost complete absence of bridged adsorbed CO bands and by a significant weakening of the Pd–CO bond relative to the same bond in the bimetallic samples based on γ-Al2O3 and MgAl2O4 and in the monometallic reference sample Pd/γ-Al2O3.  相似文献   

8.
Dehydration of methanol into dimethyl ether (DME) was carried out over aluminum oxides with different crystalline phases, viz. η-Al2O3, γ-Al2O3, θ-Al2O3, (χ + γ)-Al2O3, δ-Al2O3, α-Al2O3, and κ-Al2O3. The catalytic activity decreased in the following order: η-Al2O3 > γ-Al2O3 ? θ-Al2O3 ? (χ + γ)-Al2O3 ? δ-Al2O3 > α-Al2O3 ≈ κ-Al2O3. Several techniques: N2 physisorption, X-ray diffraction (XRD), temperature-programmed desorption (TPD) of NH3, and FT-IR spectroscopy after pyridine adsorption were employed to characterize these solid acid catalysts. The good correlation can be found between the catalytic activity and the amount of Lewis acid site determined by the FT-IR spectra after pyridine adsorption.  相似文献   

9.
The effective utilization of various biomolecules for creating a series of mesoporous boehmite (γ-AlOOH) and gamma-alumina (γ-Al2O3) nanosheets with unique hierarchical multilayered structures is demonstrated. The nature and concentration of the biomolecules strongly influence the degree of the crystallinity, the morphology, and the textural properties of the resulting γ-AlOOH and γ-Al2O3 nanosheets, allowing for easy tuning. The hierarchical γ-AlOOH and γ-Al2O3 multilayered nanosheets synthesized by using biomolecules exhibit enhanced crystallinity, improved particle separation, and well-defined multilayered structures compared to those obtained without biomolecules. More impressively, these γ-AlOOH and γ-Al2O3 nanosheets possess high surface areas up to 425 and 371 m2 g−1, respectively, due to their mesoporous nature and hierarchical multilayered structure. When employed for molybdenum adsorption toward medical radioisotope production, the hierarchical γ-Al2O3 multilayered nanosheets exhibit Mo adsorption capacities of 33.1–40.8 mg g−1. The Mo adsorption performance of these materials is influenced by the synergistic combination of the crystallinity, the surface area, and the pore volume. It is expected that the proposed biomolecule-assisted strategy may be expanded for the creation of other 3D mesoporous oxides in the future.  相似文献   

10.
Aluminum nitride (AlN) fibers were prepared from alumina gel fibers and by heat-treatment in ammonia. The influence of silica on the formation of AlN was investigated. It was shown that phase transformation of alumina (γ-Al2O3 to α-Al2O3) and nitridation reaction took place above 1,100 °C for pure alumina fiber. The addition of a small amount of silica (3 wt%) suppressed the formation of α-Al2O3 and preserved the highly reactive metastable alumina, and nitridation rate was enhanced. Fine grain (~20 nm) AlN fibers were obtained for pyrolysis at 1,150–1,250 °C for 3 h in ammonia, and AlN was identified as the sole crystalline phase.  相似文献   

11.
The maximum monolayer dispersion (the threshold) for WO3 on γ-Al2O3 calcined at 500°, 550°, 600°, and 640°C has been determined quantitatively by XRD (amount of crystalline phase) and XPS (intensity ratios Iw4f/IAl2). The results show that if the amount of WO3 loaded is lower than the maximum monolayer dispersion, WO3 will react with γ-Al2O3 to form surface compound due to mutual ionic interaction, and will be dispersed on γ-Al2O3 surface as monolayer then. In case the amount is higher than this value, the residual crystalline WO3 will remain. The maximum monolayer dispersion (threshold) is 0.21 g and 0.20 g WO3/100 m2 γ-Al3O3 by XRD and XPS respectively. It agrees with the value (0.189 g WO3/100 m2 or 4.90 × 10?18 W atoms/m2) calculated from the model on assumption that the WO3 is dispersed as a closed-packed monolayer on γ-Al2O3 surface. Inasmuch as WO3/γ-Al2O3 system is stable up to higher temperature, e.g. 700°C, than MoO3/γ-Al2O3 system, WO3 seems unfavorable to form new bulk compound with γ-Al2O3 at that temperature. However, Al2(MoO4)3 forms perceptibly in MoO3/γ-Al2O3 system at 500°C. Besides, the size of residual crystalline WO3 in WO3/γ-Al2O3 is much smaller than that of MoO3 in MoO3/γ-Al2O3. It might be the reason that WO3/γ-Al2O3 catalyst is superior to MoO3/γ-Al2O3 in hydrodesulfurization (HDS) or hydrodenitrogenation (HDN) in some cases.  相似文献   

12.
A solid-phase microextraction (SPME) fiber coated with a novel γ-Al2O3 coating has been prepared and used to screen gaseous samples for traces of volatile organic compounds (VOC). The adsorption and desorption characteristics of the new porous layer have been investigated. Results show that it has good thermal stability (to 350 °C), high extraction capacity, a long life-span, and good selectivity for alkanes and esters. Detection limits for VOC in a gaseous matrix, for extraction with the γ-Al2O3-coated fiber then analysis by GC–FID, were less than 0.714 ng L?1.  相似文献   

13.
Polyaniline/γ-Al2O3 (PANI/γ-Al2O3) composites were synthesized by in-situ polymerization at the presence of HCl as dopant by adding γ-Al2O3 nanoparticles into aniline solution. The composites were characterized by FTIR and XRD. The thermogravimetry (TG) and modulated differential scanning calorimetry (MDSC) were used to study the thermal stability and glass transition temperature (T g) of the composites, respectively. The results of FTIR showed that γ-Al2O3 nanoparticles connected with the PANI chains and affected the absorption characteristics of the composite through the interaction between PANI and nano-sized γ-Al2O3. And the results of XRD indicated that the peaks intensity of the PANI/γ-Al2O3 composite were weaker than that of the pure PANI. From TG and derivative thermogravimetry (DTG) curves, it was found that the pure PANI and the PANI/γ-Al2O3 composites were all one step degradation. And the PANI/γ-Al2O3 composites were more thermal stable than the pure PANI. The MDSC curves showed that the nano-sized γ-Al2O3 heightened the glass transition temperature (T g) of PANI.  相似文献   

14.
A new method for producing a nanosized γ-Al2O3 powder was proposed, by which a saturated solution of aluminum oxychloride and sucrose was subjected to sequential heat treatment to 350°C to form a transient species and then to 800°C to form a nanosized γ-Al2O3 powder. The optimal treatment parameters were determined. Stages of the process were identified. The transient species and the nanosized γ-Al2O3 powder were studied.  相似文献   

15.
Gold nanoparticles (2–10 nm) supported on γ-Al2O3 exhibit high activity and stability in the hydrogenation of phenylacetylene into styrene in the phenylacetylene-styrene mixture. The selectivity of the catalyst is particle size-dependent: the styrene-to-ethylbenzene molar ratio in the reaction products increases from 2 to 30 as the average gold particle size decreases from 8 to 2.5 nm. The selectivity of phenylacetylene hydrogenation correlates with the selectivity of phenylacetylene adsorption on Au/γ-Al2O3 from the phenylacetylene-styrene mixture.  相似文献   

16.
Alumina nanofibers were fabricated by calcination of the polyvinylpyrrolidone (PVP)/pseudo-boehmite nanocomposite precursor fibers formed by electrospinning PVP/ethanol solution of dispersed pseudo-boehmite nanoparticles with and without additive of silica. The evolution of the phase, mechanical property and morphological features of the calcined fibers were studied and the effect of adding SiO2 on the phase transformation of alumina was discussed. Adding SiO2 can retard the phase transformation of γ-Al2O3 to α-Al2O3 and therefore inhibit the growth of alumina grains during calcination. Upon calcining the precursor fibers with 4 wt% SiO2 additive at 1,300 °C, continuous alumina nanofibers with diameter ranging from 300 to 800 nm were obtained. These continuous nanofibers exhibited good flexibility and could be very promising for applications in filtration and catalyst support.  相似文献   

17.
以有机溶剂均匀沉淀法制备了镓的氧化物,借助XRD、NH3-TPD、TEM和BET等手段对物相结构、表面性质等进行了表征。结果表明,制备过程中得到的前驱体为GaOOH,前驱体经500 ℃热处理后得到γ-Ga2O3。γ-Ga2O3的晶格类型与γ-Al2O3相似,为有阳离子缺陷的立方尖晶石结构。表面具有酸量较大的中强酸中心,而弱酸中心含量相对较少。微观上大多为厚10 nm、直径100 nm左右的二维纳米片,大部分纳米片分布于一个方向,一些组成花瓣形。将制得的γ-Ga2O3用于DME水解反应,结果表明,270 ℃下DME的转化率可达24%,接近平衡转化率,反应后催化剂的织构性质没有显著变化,比表面积仍可达到130 m2/g。将γ-Ga2O3与Cu基催化剂复合后用于270 ℃下的低温浆态床DME水蒸气重整反应,DME转化率和H2选择性高达99%和68%,经200 h反应后催化剂仍能保持95%以上的活性,表现出良好的工业化应用前景。  相似文献   

18.
The nature and stability of surface species of CuCl2 supported on α-Al2O3, γ-Al2O3, and SiO2 were investigated by using X-ray diffraction techniques and reflectance spectroscopy. No specific chemical interaction of CuCl2 is observed on an inert α-Al2O3 support, as opposed to hydrated carriers as SiO2 and γ-Al2O3. On these supports the coordination sphere of Cu2+ consists of surface groups (OH? or O? at drying and activation, resp.), H2O and Cl?, with the H2O ligands decreasing in concentration in the process of impregnation, drying and calcination. γ-Al2O3 samples, calcined at 400°C, show γ-Cu2(OH)3Cl as opposed to CuAl2O4 at higher temperatures. The absence of Cu2(OH)3Cl on SiO2-supported samples is related to the acid-base characteristics of the carriers. The various supports can be arranged in the following order of stability of the complexes formed: γ-Al2O3 > SiO2 ? -Al2O3.  相似文献   

19.
Carbonyl iron powders were coated with iron phosphate using phosphating method and boehmite (γ‐AlOOH) or silicon hydroxide (Si(OH)4) nanoparticles derived from the hydrolysis of tri‐sec‐butoxide (Al(OC4H9)3) or tetramethylsilane (Si(OCH3)4) using sol–gel method. The coated powders were dried and calcined at 400 °C for 3 h in air. Cross‐section morphology of coated carbonyl iron powders were investigated by scanning electron microscopy energy dispersive X‐ray analysis. Coated Fe micro‐particles were spherical in shape with ‘shell/core’ structures. The shells consisted of an amorphous layer with varying thickness (100–800 nm) and the core represented a carbonyl iron. Gelatinous morphology of dried FePO4 coating composed from nanoparticles of iron oxyhydroxides and hydrated iron phosphate with a shell thickness of ~100 nm around iron particles was observed. In coatings based on alumina or silica xerogels with a thickness of ~100–150 nm or ~200–500 nm, the coatings were composed of iron oxyhydroxides and γ‐AlOOH or Si(OH)4. The resulting XRD diffractograms revealed the hematite (α‐Fe2O3) and magnetite (Fe3O4) that were formed in phosphated and sol–gel coated iron powders. The X‐ray diffraction patterns did not verify the presence of phosphates, alumina or silica and indicate the amorphous or nanocrystalline structure of FePO4, γ‐Al2O3 and SiO2. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

20.
On Reactions of Alkali Hexafluorosilicates with Aluminum Oxides The reaction of Na- and K-hexafluorosilicates and α- or γ-Al2O3 has been investigated. Final reaction products are fluoroaluminates and alumosilicates. The reaction mechanism has been discussed. Influence of reaction parameters like time, temperature, layer thickness, and the effect of admixtures (fluorides, SiO2) have been regarded. Tablet-reactions show the introduction of reaction by Si? F species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号