首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
We report on the first dark-matter(DM)search results from PandaX-I,a low threshold dual-phase xenon experiment operating at the China JinPing Underground Laboratory.In the 37-kg liquid xenon target with 17.4 live-days of exposure,no DM particle candidate event was found.This result sets a stringent limit for low-mass DM particles and disfavors the interpretation of previously-reported positive experimental results.The minimum upper limit,3.7×10-44cm2,for the spin-independent isoscalar DM-particle-nucleon scattering cross section is obtained at a DM-particle mass of 49 GeV/c2at 90%confidence level.  相似文献   

2.
We propose a unified scenario to generate the masses of Dirac neutrinos and cold dark matter at the TeV scale, understand the origin of dark energy and explain the matter–antimatter asymmetry of the universe. This model can lead to significant impact on the Higgs searches at LHC.  相似文献   

3.
Motivated by Kerner and Man’s fermions tunneling method of dimension 4 black holes, in this paper, we further improve the analysis to investigate Hawking radiation of charged Dirac particles with spin 1/2 from general non-extremal rotating charged black holes with two parameters and a non-zero cosmological constant in minimal five-dimensional gauged supergravity. For space-times with different horizon topology and different dimensions, constructing a set of appropriate γ μ matrices for general covariant Dirac equation is an important technique for the fermion tunneling method. By introducing a set of appropriate matrices γ μ and employing the ansatz for the spin-up spinor field, we successfully recovered the tunneling probability of charged Dirac particles and the expected Hawking temperature of the black hole, which is exactly consistent with that obtained by other methods. Moreover, the fermion tunneling method can be directly applied to the other five-dimensional charged black holes, which strengthens the validity and power of the fermion tunneling method.  相似文献   

4.
The SLIM experiment at the Chacaltaya high altitude laboratory was sensitive to nuclearites and Q-balls which could be present in the cosmic radiation as possible Dark Matter components. It was sensitive also to strangelets, i.e. small lumps of Strange Quark Matter predicted at such altitudes by various phenomenological models. The analysis of 427 m2 of Nuclear Track Detectors exposed for 4.22 years showed no candidate event. New upper limits on the flux of downgoing nuclearites and Q-balls at the 90% C.L. were established. The null result also restricts models for strangelets propagation through the Earth atmosphere.  相似文献   

5.
In this paper, two modified Ricci models are considered as the candidates of unified dark matter–dark energy. In model one, the energy density is given by rMR=3Mpl(aH2+b[(H)\dot])\rho_{\mathrm{MR}}=3M_{\mathrm{pl}}(\alpha H^{2}+\beta\dot{H}), whereas, in model two, by rMR=3Mpl(\fraca6 R+g[(H)\ddot]H-1)\rho_{\mathrm{MR}}=3M_{\mathrm{pl}}(\frac{\alpha}{6} R+\gamma\ddot{H}H^{-1}). We find that they can explain both dark matter and dark energy successfully. A constant equation of state of dark energy is obtained in model one, which means that it gives the same background evolution as the wCDM model, while model two can give an evolutionary equation of state of dark energy with the phantom divide line crossing in the near past.  相似文献   

6.
7.
In this paper we put forward a running coupling scenario for describing the interaction between dark energy and dark matter. The dark sector interaction in our scenario is free of the assumption that the interaction term Q is proportional to the Hubble expansion rate and the energy densities of dark sectors. We only use a time-variable coupling b(a) (with a the scale factor of the universe) to characterize the interaction Q. We propose a parametrization form for the running coupling b(a)=b 0 a+b e (1−a) in which the early-time coupling is given by a constant b e , while today the coupling is given by another constant, b 0. For investigating the feature of the running coupling, we employ three dark energy models, namely, the cosmological constant model (w=−1), the constant w model (w=w 0), and the time-dependent w model (w(a)=w 0+w 1(1−a)). We constrain the models with the current observational data, including the type Ia supernova, the baryon acoustic oscillation, the cosmic microwave background, the Hubble expansion rate, and the X-ray gas mass fraction data. The fitting results indicate that a time-varying vacuum scenario is favored, in which the coupling b(z) crosses the noninteracting line (b=0) during the cosmological evolution and the sign changes from negative to positive. The crossing of the noninteracting line happens at around z=0.2–0.3, and the crossing behavior is favored at about 1σ confidence level. Our work implies that we should pay more attention to the time-varying vacuum model and seriously consider the phenomenological construction of a sign-changeable or oscillatory interaction between dark sectors.  相似文献   

8.
We use the Ly-alpha forest power spectrum measured by the Sloan Digital Sky Survey and high-resolution spectroscopy observations in combination with cosmic microwave background and galaxy clustering constraints to place limits on a sterile neutrino as a dark matter candidate in the warm dark matter scenario. Such a neutrino would be created in the early Universe through mixing with an active neutrino and would suppress structure on scales smaller than its free-streaming scale. We ran a series of high-resolution hydrodynamic simulations with varying neutrino masses to describe the effect of a sterile neutrino on the Ly-alpha forest power spectrum. We find that the mass limit is m(s) >13 keV at 95% C.L. (9 keV at 99.9%), which is above the upper limit allowed by x-ray constraints, excluding this candidate from being all of the dark matter in this model.  相似文献   

9.
It is shown that the complete system of classical gravitational equations for an isolated centrally symmetric body yields that: (1) in terms of Galilean coordinates all metric coefficients of the Riemannian space induced by the body cannot be equal to zero or infinity anywhere; (2) they, together with the first-order derivatives, should be continuous everywhere. The equations do not contain solutions corresponding to “black holes,” but admit solutions corresponding to objects for which the surface radius (in terms of standard coordinates) is equal to the double mass of matter under this surface. These objects can make the main contribution to the dark matter of the Universe and explain observed effects, such as gravitational microlensing and other effects. Under certain conditions they can become powerful X-ray sources.  相似文献   

10.
Two experiments from the Fermilab, E989 and CDF II, have reported two anomalies for muon g-2 and W-boson mass that may indicate the new physics at the low energy scale. Here we examine the possibility of a common origin of these two anomalies in the Next-to-Minimal Supersymmetric Standard Model. Considering various experimental and astrophysical constraints such as the Higgs mass, collider data, flavor physics, dark matter relic density, and direct detection experiments, we find that lighter ele...  相似文献   

11.
12.
13.
Baryon-density perturbations of large amplitude may exist if they are compensated by dark-matter perturbations such that the total density is unchanged. Primordial abundances and galaxy clusters allow these compensated isocurvature perturbations (CIPs) to have amplitudes as large as ~10%. CIPs will modulate the power spectrum of cosmic microwave background (CMB) fluctuations--those due to the usual adiabatic perturbations--as a function of position on the sky. This leads to correlations between different spherical-harmonic coefficients of the temperature and/or polarization maps, and induces polarization B modes. Here, the magnitude of these effects is calculated and techniques to measure them are introduced. While a CIP of this amplitude can be probed on large scales with existing data, forthcoming CMB experiments should improve the sensitivity to CIPs by at least an order of magnitude.  相似文献   

14.
Annihilating dark matter (DM) has been discussed as a possible source of gamma rays from the galactic center and as a contribution to the extragalactic gamma-ray background. Assuming universality of the density profile of DM halos, we show that it is quite unlikely that DM annihilation is a main constituent of extragalactic gamma-ray background, without exceeding the observed gamma-ray flux from the galactic center. This argument becomes stronger when we include enhancement of the density profiles by supermassive black holes or baryon cooling. The presence of a substructure may loosen the constraint, but only if a very large cross section as well as the rather flat profile are realized.  相似文献   

15.
16.
The purpose of the work is to evaluate the neutron background from an additional neutron source, the (α, n) reaction on 13C, in the polyethylene neutron shielding of the EDELWEISS-II experiment on the search for weakly interacting cold matter particles. The characteristic length of radon diffusion into polyethylene is obtained, the neutron energy spectrum is constructed, and the neutron flux from the (α, n) reaction is evaluated.  相似文献   

17.
Self-interacting dark matter(SIDM) is a leading candidate proposed to solve discrepancies between predictions of the prevailing cold dark matter theory and observations of galaxies. Many SIDM models predict the existence of a light force carrier that mediates strong dark matter self-interactions. If the mediator couples to the standard model particles, it could produce characteristic signals in dark matter direct detection experiments. We report searches for signals of SIDM models with a light mediator using the full dataset of the PandaX-Ⅱ experiment, basing on a total exposure of 132 tonne-days. No significant excess over background is found, and our likelihood analysis leads to a strong upper limit on the dark matter-nucleon coupling strength. We further combine the PandaX-Ⅱ constraints and those from observations of the light element abundances in the early universe, and show that direct detection and cosmological probes can provide complementary constraints on dark matter models with a light mediator.  相似文献   

18.
19.
A novel detection of sub-GeV dark matter is proposed in the paper.The electron cloud is boosted by the dark matter and emits an electron when it is dragged back by the heavy nucleus,namely the coherent scattering of the electron cloud of the atom.The survey in the x-ray diffraction shows that the atomic form factors are much more complex than the naive consideration.The results of the relativistic Hartree-Fock(RHF) method give non-trivial shapes of the atoms.The detailed calculation of the recoi...  相似文献   

20.
张荣培  张立伟 《中国物理 B》2012,21(9):90206-090206
In this study, we use the direct discontinuous Galerkin method to solve the generalized Burgers-Fisher equation. The method is based on the direct weak formulation of the Burgers-Fisher equation. The two adjacent cells are jointed by a numerical flux that includes the convection numerical flux and the diffusion numerical flux. We solve the ordinary differential equations arising in the direct Galerkin method by using the strong stability preserving Runge-Kutta method. Numerical results are compared with the exact solution and the other results to show the accuracy and reliability of the method.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号