首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 187 毫秒
1.
不同重力环境下辐射加热材料表面着火特性分析   总被引:3,自引:0,他引:3  
研究外界辐射加热下,不同重力环境中热薄燃料的着火特性.探讨了重力、环境氧浓度、环境压力及外界辐射强度对着火的影响.结果表明,随着重力的变化,存在不同的着火机制.在微重力和在高的环境氧浓度中,材料的着火延迟时间变短.压力减小,着火延迟时间增大.随着辐射强度的增大,着火延迟时间变小.  相似文献   

2.
本文在低压弱浮力环境下,研究了压力和氧气体积分数对过载电流下导线绝缘层燃烧前期碳烟析出特性及温升特性的影响。结果表明,典型弱浮力(10~(-2)g)下碳烟析出过程由绝缘层完好阶段和绝缘层破坏阶段组成,且随着氧气体积分数的增大,总反应时长呈近乎线性减小,而峰值温度则加速上升。低压环境(低于10 kPa)下,即浮力小于10~(-2)g,压力大小为影响绝缘层碳烟析出过程的主要因素,压力越低,热量不易逸出,绝缘层温度越高,破裂越快,但烟气析出量逐渐减少。  相似文献   

3.
《物理》2016,(4)
为了研究微重力条件下导线绝缘层着火先期征兆和着火早期烟的析出和烟气流动规律,研制了SJ-10卫星导线特性箱有效载荷实验装置。该装置可实现对导线的恒流过载加热,并采用先进的测试技术,获得导线着火先期征兆和烟气浓度分布。地面验证实验表明,该装置安全可靠,同时能充分利用空间实验能力,保障科学目标的实现。  相似文献   

4.
低压下导线绝缘层着火先期征兆研究   总被引:2,自引:0,他引:2  
导线绝缘层的过热以及由此发生的着火和燃烧是载人航天飞行器中引起火灾的主要原因.研究微重力下导线绝缘层的可燃性对于预防飞船中火灾的发生有重要意义.本文利用功能模拟的试验方法,研究了不同环境压力和导线通电电流下,导线线芯直径以及导线捆绑数量对绝缘层表面的平衡温度及升温速率的影响.研究结果为实践8号卫星搭载实验工况的选择提供了依据,同时对于导线绝缘层先期着火征兆研究有实际意义.  相似文献   

5.
为理解不同典型参数对无烟煤着火特性的影响,本文建立了单颗粒煤粉着火模型。基于主要的总包非均相反应和气相反应及相应的对流和传热传质规律,模拟O_2/N_2燃烧方式下煤粉颗粒的着火过程,研究了不同的气流温度、O_2浓度、对流条件等关键因素对无烟煤颗粒着火的影响特征,结果表明气流温度增加时煤粉颗粒着火延迟时间在不同对流条件下普遍变短,且温度较高时着火延迟时间对对流强度变化的响应有所减弱;在相同气流温度和O_2浓度条件下,气流对流强度处于较低水平时,其变化对着火延迟时间的影响相对明显;当气流的温度和对流条件一定时,O_2浓度增加则着火延迟时间变短,但影响较小。模型得到文献数据的有效检验。  相似文献   

6.
在空间微重力环境中,对聚甲基丙烯酸甲酯(PMMA)试样进行点燃实验,研究了不同氧气浓度和环境压力条件下热厚材料的着火特性。结果表明,在研究涉及的实验条件下,材料均可被点燃。外加热源消失后,氧气浓度较高时,点火形成的材料表面火焰可以自维持并稳定传播,而氧气浓度较低时,火焰不能自维持并最终熄灭。材料着火具有爆发性,材料热解形成的可燃气瞬间被点燃形成火焰。重复点火时,材料可以被点燃,但外加热源消失后火焰不能维持传播,材料着火过程中散发出大量的发光颗粒并随气流迁移,存在引燃周围易燃物的风险。材料着火后形成的稳定火焰总是朝着与气流流动相反的方向运动,即火焰逆风传播,没有出现顺风传播的现象。  相似文献   

7.
利用OH自由基特征发射谱测量正庚烷的点火延迟时间   总被引:2,自引:0,他引:2  
在化学激波管中利用反射激波进行点火,采用OH自由基在306.4nm处特征发射谱线强度的急剧变化标志燃料的着火,由光谱单色仪、光电倍增管、压力传感器和示波器组成测量系统,测量了正庚烷/氧气的点火延迟时间,点火压力(1.0±0.1)和(0.75±0.05)atm,点火温度1 170~1 730K,当量比1.0,得到了在此实验条件下正庚烷/氧气点火延迟时间随温度变化的关系式。研究结果表明正庚烷/氧气点火延迟时间随温度的增加呈指数减小,点火压力为0.75atm时,随着点火温度的增加,点火延迟时间的变化率要小于1.0atm条件时。实验结果为建立正庚烷燃烧反应动力学模型,验证正庚烷燃烧反应机理提供了实验依据。  相似文献   

8.
使用二维直接数值模拟方法研究HCCI发动机条件下浓度和温度不均匀性对庚烷点火过程的影响。计算中考虑了详细的组分输运过程、活塞运动带来的气体压缩效应以及简化的庚烷化学动力学机理。二维直接数值模拟展示了燃料的负温度系数(NTC)特性对点火过程的影响,结果表明浓度分层增加使得第二阶段点火延迟时间缩短;温度分层增加,点火延迟时间增加,与具有单一阶段点火特性的燃料相反。之后使用相同DNS程序计算了一维算例,发现初始温度在NTC以内,并且温度与浓度不相关时,浓度分层对点火过程起主导作用,浓度高温度较低的区域先着火;初始温度在NTC以外,并且温度与浓度负相关时,存在一个最容易着火的区域:浓度和温度都较高的地方先点火。  相似文献   

9.
采用数值模拟方法研究了静止微重力环境中,表面辐射热损失对燃料表面火焰传播特性的影响以及表面辐射和压力对火焰传播特性的共同影响。结果表明,随着表面辐射增大,火焰传播速度减小,在考虑表面辐射后,随着压力的增大,火焰传播速度增大。采用无量纲参数分析了表面辐射对火焰传播速度的影响,进一步阐明了微重力环境下的火焰传播机理。  相似文献   

10.
本文采用基元反应模拟H2-O2(N2)混合气体的着火过程,得到了不同散热和不同燃料-氧化剂初始浓度比条件下着火临界曲线。结果表明: H2/O2摩尔比相同时,不同散热条件下的着火临界曲线非常相似,可近似看成同一曲线在第二区的“延伸线”上滑移。临界曲线第二区的P—T关系符合2k1=ks[Ms]。散热对着火极限的影响和着火延迟时间有密切关系,在临界曲线第二区延迟时间最小,导致散热对该区的影响最弱,从而使着火临界曲线非常相似。  相似文献   

11.
Ignition phenomena of electric wires carrying short-term excess electric currents were investigated in microgravity with experiments and calculations. Microgravity experiments were conducted in 100 m and 50 m drop towers and calculations were carried out with a one dimensional cylindrical coordinate system. The experimental results showed that the limiting oxygen concentration (LOC) under a given electric current was much lower in microgravity than that in normal gravity except for extremely large electric current overload cases. According to the calculations, the supplied electric current, the Joule energy supplied to the wire, determined the amount of pyrolysis gas from the insulation and the resulting thickness of the gaseous fuel layer around the sample in gas phase increased. The increased fuel layer thickness resulted in a longer ignition delay, which leads to lower LOC. The changes in the estimated LOC changed as a function of supplied energy and agreed well with the experimental results. Further, the minimum ignition energy causing ignition (ignition limit) is nearly constant under a constant oxygen concentration, which supports experimental findings in previous research.  相似文献   

12.
Tests with flames spreading over wire insulation in microgravity were performed at varying external opposed flow conditions to examine the influence of flow velocity in the time dependent volume change of molten insulation. In the experiments, low density polyethylene insulated Nickel–chrome wire specimens were used and the oxygen concentration was fixed at 30% (N2 balanced). The results show that the time dependent changes in molten insulation volume are related to the opposed flow velocity. Further, as opposed flow velocity increases, the volume change rate decreases monotonically. By subtracting the volume change rate from the volume supply rate from the solid part to the molten part, which is calculated by multiplying the rate of spreading of molten insulation at the leading edge by the cross sectional area of the insulation, a pyrolysis volume rate for the polyethylene was established. The pyrolysis volume rate is defined as the amount of consumed molten insulation volume per unit time. After these calculations, it was found that the pyrolysis volume rate increases monotonically with increases in the opposed flow velocity. Further, numerical calculations of time dependent volume change in the molten insulation at different flow velocities were made. The numerical results show good agreement with the experimental results of the molten insulation volume change during the 0–4.5 s of microgravity measured here. By using the numerical calculations for this initial short period, the time dependent volume change in molten insulation during longer-term microgravity is predicted. The calculated results show that the volume finally reaches a steady state value in flow velocities of 10–250 mm/s investigated here. These results provide insight into the mechanism of flame spreading over wire insulation, especially the unsteadiness of the flame in flame spreading events.  相似文献   

13.
A modified 1-D transient model considering intra-particle thermal conduction is adopted to improve the predictions of the ignition characteristics of isolated coal particles. The study aims at resolving the incorrect prediction on the variation trend of ignition temperature Ti with the change of oxygen concentration XO2, interpreting the contradictory dependencies on coal particle size and furnace temperature and clarifying the conditions when the intra-particle thermal conduction should be considered. The predictions are compared with microgravity data in which the buoyancy effect is minimized. The results reveal that the previous ignition model with transient adiabatic criterion fails to predict the Ti variation with XO2, since it cannot accurately predict Ti and delay time in the low XO2 region. Instead, the ignition model with flammability limit ignition criterion can well predict Ti in a wide range of XO2. Intra-particle thermal conduction causes remarkable temperature differences for large coal particles, and moreover, the variation trends of surface and center temperatures with particle size are very different. The center temperature at ignition drops remarkably with increasing particle size, while the surface temperature barely changes or slightly increases with particle size. At the same particle size, the variation trends of surface and center temperatures with furnace temperature are also opposite. The ignition mode and variation trend of ignition surface temperature with particle size depends on the heating rate and particle size itself. The contradictory experimental results reported by different researchers are attributed to the particle size and temperature measurement location. The conditions necessary to consider the intra-particle thermal conduction are discussed. Lastly, the effect of the intraparticle thermal conduction is shown on an ignition mode diagram.  相似文献   

14.
In order to reduce the risk of decompression sickness associated with extra-vehicular activity (EVA), NASA is designing the next generation of exploration vehicles and habitats with a different cabin environment than used previously. The proposed environment uses a total cabin pressure of 52.7–58.6 kPa with an oxygen concentration of 30–34% by volume and was chosen with material flammability in mind. Because materials may burn differently under these conditions and there is little information on how this new environment affects the flammability of the materials onboard, it is important to conduct material flammability experiments at the intended exploration atmosphere. One method to evaluate material flammability is by its ease of ignition. To this end, piloted ignition delay tests were conducted in the Forced Ignition and Spread Test (FIST) apparatus subject to this new environment. In these tests, polymethylmethacylate (PMMA) was exposed to a range of oxidizer flow velocities and externally applied heat fluxes. Tests were conducted for a baseline case of normal pressure and oxygen concentration, low pressure (58.6 kPa) with normal oxygen (21%), and low pressure with 32% oxygen concentration conditions to determine the individual effect of pressure and the combined effect of pressure and oxygen concentration on the ignition delay. It was found that reducing the pressure while keeping the oxygen concentration at 21% reduced the ignition time by 17% on average. Increasing the oxygen concentration at low pressures reduced the ignition time by an additional 10%. It was also noted that the critical heat flux for ignition decreases at exploration atmospheres. These results show that tests conducted in standard atmospheric conditions will underpredict the ignition of materials intended for use on spacecraft and that, at these conditions, materials are more susceptible to ignition than at current spacecraft atmospheres.  相似文献   

15.
Experimental observations are presented of the effect of flow velocity, oxygen concentration, and a thermal radiant flux on the transition from smoldering to flaming in forward smoldering of small samples of polyurethane foam with a gas/solid interface. The experiments are part of a project studying the transition from smoldering to flaming under conditions encountered in spacecraft facilities, i.e., microgravity, low velocity variable oxygen concentration flows. Because the microgravity experiments are planned for the International Space Station, the foam samples had to be limited in size for safety and launch mass reasons. The feasible sample size is too small for smolder to self-propagate because of heat losses to the surroundings. Thus, the smolder propagation and the transition to flaming had to be assisted by reducing heat losses to the surroundings and increasing the oxygen concentration. The experiments are conducted with small parallelepiped samples vertically placed in a wind tunnel. Three of the sample lateral-sides are maintained at elevated temperature, and the fourth side is exposed to an upward flow and a radiant flux. It is found that decreasing the flow velocity and increasing its oxygen concentration, and/or increasing the radiant flux enhances the transition to flaming and reduces the time delay to transition. Limiting external conditions for the transition to flaming are reported for this experimental configuration. The results show that smolder propagation and transition to flaming can occur in relatively small fuel samples if the external conditions are appropriate. The results also indicate that transition to flaming occurs in the char region left behind by the smolder reaction, and it has the characteristics of a gas-phase ignition induced by the smolder reaction, which acts as the source of both gaseous fuel and heat. A simplified energy balance analysis is able to predict the boundaries between the transition/no transition regions.  相似文献   

16.
杨晋朝  夏智勋  胡建新 《物理学报》2012,61(16):164702-164702
建立了镁颗粒群着火的一维非稳态有限影响体模型, 数值模拟颗粒群中镁颗粒的着火过程. 研究表明, 当镁颗粒表面反应加剧之后,颗粒相温度急剧上升, 迅速达到着火, 而其周围气相的温升速率却远小于颗粒的温升速率; 在着火过程中气相温度只在颗粒表面附近升高比较明显, 整体温度升高不大. 分析了颗粒群内部参数和环境参数对镁颗粒群着火的影响. 随颗粒浓度的增加, 颗 粒群变得易于着火, 其着火时间变短, 但颗粒浓度增大到一定程度后, 继续增大该值将对颗粒群的着火起消极作用. 环境压力对颗粒群着火的影响比较小,在1-5 atm范围内颗粒群的着火性能基本不变. 气相中氧气浓度对颗粒群的着火性能影响也不显著, 但当氧气浓度过小时, 对着火过程的影响将大大增强.颗粒粒径、气相/颗粒相初温、辐射源温度对颗粒 群着火的影响巨大,小粒径、高温度促使颗粒群快速着火.数值模拟与文献中试验 结果的变化趋势相一致.  相似文献   

17.
Knowledge of the autoignition characteristics of diesel fuels is of great importance for understanding the combustion performance in engines and developing surrogate fuels. Here ignition delays of China's stage 6 diesel, a commercial fuel, were measured in a heated rapid compression machine (RCM) under engine-relevant conditions. Gas-phase autoignition experiments were carried out at equivalence ratios ranging from 0.37 to 1.0, under compressed pressures of 10, 15, and 20?bar, and within a temperature range of 685–865?K. In all investigated conditions, negative temperature coefficient (NTC) behavior of the total ignition delays is observed. The autoignition of the diesel fuel exhibits pronounced two-stage characteristics with strong low-temperature reactivity. Experimental results indicate that the total ignition delays shorten with increasing compressed pressure, oxygen mole fraction and fuel mole fraction. The first-stage ignition delays are mainly controlled by compressed temperature and also affected by oxygen mole fraction and compressed pressure but show a very weak dependence on fuel mole fraction. Correlations describing the first-stage ignition delay and the total ignition delay were proposed to further clarify the ignition delay dependence on the multiple factors. Additionally, it is found that the newly measured ignition delays well coincide with and complement the diesel ignition data in the literature. A recently developed diesel mechanism was used to simulate the diesel autoignition on the RCM. The simulation results are found to agree well the experimental measurements over the whole temperature ranges. Species concentration analysis and brute force sensitivity analysis were also conducted to identify the crucial species and reactions controlling the autoignition of the diesel fuel.  相似文献   

18.
The values of the ignition delay time of cyclopropane–oxygen–argon (cyclo-C3H6–O2–Ar) mixtures of different compositions (φ = 0.333, 1, and 3) behind reflected shock waves at temperatures of 1200–1640 K and a pressure of (0.55 ± 0.05) MPa are measured. A kinetic mechanism of cyclopropane ignition using the known rate constants for the most important elementary reactions is developed. The mechanism closely describes both our own and published experimental data on the delay time of ignition of cyclopropane in shock waves over wide ranges of temperature (1200–2100 K), pressure (0.1–0.55 MPa), cyclopropane concentrations (0.05–11 vol %), and oxygen concentrations (0.25–21 vol %). It is shown that, with increasing fraction of diluent gas in the mixture, the dependence of the ignition delay time on the fuel-to-oxidizer equivalence ratio changes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号