首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
A novel donor-bridge-acceptor system has been synthesized by covalently linking a p-phenylene vinylene oligomer (OPV) and a perylene diimid (PERY) at opposite ends of a m-phenylene ethynylene oligomer (FOLD) of twelve phenyl rings, containing nonpolar (S)-3,7-dimethyl-1-octanoxy side chains. For comparison, model compounds have been prepared in which either the donor or acceptor is absent. In chloroform, the oligomeric bridge is in a random coil conformation. Upon addition of an apolar solvent (heptane) the oligomeric bridge first folds into a helical stack and subsequently intermolecular self-assembly of the stacks into columnar architectures occurs. Photoexcitation in the random coil conformation, where the interaction between the donor and acceptor chromophores is small, results only in long-range intramolecular energy transfer in which the OPV singlet-excited state is transformed into the PERY singlet-excited state. In the folded conformation of the bridge, donor and acceptor are closer and their enhanced interaction favors the formation the OPV(*)(+)-FOLD-PERY(*)(-) charge-separated state upon photoexcitation. As a result, the extent of photoinduced charge separation depends on the degree of folding of the bridge between donor and acceptor and therefore on the apolar nature of the medium. As a consequence, and contrary to conventional photoinduced charge separation processes, the formation of the OPV(*)(+)-FOLD-PERY(*)(-) charge-separated state is more favored in apolar media.  相似文献   

2.
Photochemically generated long-lived charge separation is the key step in processes that aim for conversion of solar energy into chemical energy. In this study, we focus on a Ru polypyridyl complex [(bpy)(2)Ru(II)L, bpy = bipyridine, L = 1,2-bis[4-(4(')-2,2(')-bipyridyl) ethene] encapsulated on the surface of a pinhole-free zeolite membrane by quaternization of L and surrounded with intrazeolitic bipyridinium ions (N,N'-trimethyl-2,2'-bipyridinium ion, 3DQ(2+)). Visible-light irradiation of the Ru complex side of the membrane in the presence of a sacrificial electron donor led to formation of PVS(-*) on the other side. Pore-blocking disilazane-based chemistry allows for Na(+) to migrate through the membrane to maintain charge balance, while keeping the 3DQ(2+) entrapped in the zeolite. These results provide encouragement that the zeolite membrane based architecture has the necessary features for not only incorporating molecular assemblies with long-lived charge separation but also for ready exploitation of the spatially separated charges to store visible light energy in chemical species.  相似文献   

3.
Attaching tetraphenyl porphyrins, with peripheral acetyl or malonate groups, to C59N leads to the first covalently linked heterofullerene-porphyrin conjugates that exhibit long-lived intramolecular charge separation.  相似文献   

4.
Colloidal semiconductor-metal nanoheterostructures that combine the light-harvesting ability of semiconductor nanocrystals with the catalytic activity of small metal nanoparticles show promising applications for photocatalysis, including light-driven H(2) production. The exciton in the semiconductor domain can be quenched by electron-, hole-, and energy transfer to the metal particle, and the competition between these processes determines the photocatalytic efficiency of these materials. Using ultrafast transient absorption spectroscopy, we show that, in CdS-Pt heterostructures consisting of a CdS nanorod with a Pt nanoparticle at one end, the excitons in the CdS domain dissociate by ultrafast electron transfer (with a half-life of ~3.4 ps) to the Pt. The charge separated state is surprisingly long-lived (with a half-life of ~1.2 ± 0.6 μs) due to the trapping of holes in CdS. The asymmetry in the charge separation and recombination times is believed to be the key feature that enables the accumulation of the transferred electrons in the Pt tip and photocatalysis in the presence of sacrificial hole acceptors.  相似文献   

5.
Electron-transfer reactions are fundamental to many practical devices, but because of their complexity, it is often very difficult to interpret measurements done on the complete device. Therefore, studies of model systems are crucial. Here the rates of charge separation and recombination in donor-acceptor systems consisting of a series of butadiyne-linked porphyrin oligomers (n = 1-4, 6) appended to C(60) were investigated. At room temperature, excitation of the porphyrin oligomer led to fast (5-25 ps) electron transfer to C(60) followed by slower (200-650 ps) recombination. The temperature dependence of the charge-separation reaction revealed a complex process for the longer oligomers, in which a combination of (i) direct charge separation and (ii) migration of excitation energy along the oligomer followed by charge separation explained the observed fluorescence decay kinetics. The energy migration is controlled by the temperature-dependent conformational dynamics of the longer oligomers and thereby limits the quantum yield for charge separation. Charge recombination was also studied as a function of temperature through measurements of femtosecond transient absorption. The temperature dependence of the electron-transfer reactions could be successfully modeled using the Marcus equation through optimization of the electronic coupling (V) and the reorganization energy (λ). For the charge-separation rate, all of the donor-acceptor systems could be successfully described by a common electronic coupling, supporting a model in which energy migration is followed by charge separation. In this respect, the C(60)-appended porphyrin oligomers are suitable model systems for practical charge-separation devices such as bulk-heterojunction solar cells, where conformational disorder strongly influences the electron-transfer reactions and performance of the device.  相似文献   

6.
We report on photoinduced charge separation in solid films of two perylene diimides; intramolecular charge separation and recombination is correlated with a reduction in the yield of long-lived, intermolecular charge-separated species.  相似文献   

7.
In the present paper, we report a new approach toward light-harvesting reverse micellar systems from molecular blends of anthracene and perylene building blocks. The self-assembly initiated by protonation of the molecular blends gave rise to the mixed reverse micelles, in which intermolecular energy transfer from the anthracene to the perylene chromophores was observed. The atomic force microscope (AFM) studies on the reverse micelles prepared from the donor and acceptor blends at a range of the feed ratios showed a number of nanoscale-sized spherical objects homogeneously dispersed on the highly oriented pyrolytic graphite (HOPG) substrate. The critical micelle concentration (cmc) values of the reversed micelles at the donor:acceptor ratios of 100:0, 50:50, and 0:100 were estimated to be 7, 3, and 10 μM by fluorescence batch titrations, respectively, indicating that the cmc values should be almost equivalent regardless of the constitution of each chromophoric component. Attempt to generate the mixed reverse micelles through pairwise mixing of the donor- and acceptor-based reverse micelles resulted in spectral behaviors identical with those obtained by the self-assembly employing the donor-acceptor blends. This suggests that these two reverse micelles undergo thermodynamic exchange of the surfactant molecules to afford the mixed reverse micelles when mixing the two discrete reverse micellar systems.  相似文献   

8.
By studying photoinduced charge transfer processes in 2-(4-cyanophenyl)-3-(4-N,N-dimethylaminophenyl)-1,3-butadiene it is shown that insertion of branching points in a pi-conjugated pathway has a relatively small effect on the donor-acceptor interaction.  相似文献   

9.
Original method for fabrication of cathodes based on fluorinated fullerene black for primary lithium power cells was developed. The method includes preliminary ultrasonic treatment of the active mass.  相似文献   

10.
Ruthenium(II) polypyridyl complexes with pendant bithienyl ligands exhibiting unusually long-lived (τ ~ 3-7 μs) charge-separated excited states and a large amount of stored energy (ΔG° ~ 2.0 eV) are reported. A long-lived ligand-localized triplet acts as an energy reservoir to fuel population of an interligand charge-transfer state via an intermediate metal-to-ligand charge-transfer state in these complexes.  相似文献   

11.
Photoinduced electron-transfer rates are reported for two pairs of rigid bichromophoric molecules 1(6)/2(6) and 1(8)/2(8). In the first pair electron donor and acceptor are separated by six, in the second pair by eight, carbon—carbon σ bonds. While these σ bonds provide an all-trans coupling path in 1(6) and 1(8), that path contains s-cis elements in 2(6) and 2(8), which - as shown by X-ray structure data and by spectroscopic evidence - leads to a slight decrease in the effective, spatial donor-acceptor separation. Nevertheless, photoinduced electron transfer in each of the “stretched” compounds is about one order of magnitude faster than in the corresponding “bent” compound. This remarkable effect is interpreted as resulting from the unique ability of an all-trans array of σ bonds to mediate electronic through-bond interaction (TBI). Interestingly the solvent dependence of the rate of photoinduced electron transfer is significantly larger in the “bent” systems, thus indicating that superexchange via solvent molecules becomes competitive with TBI if an all-trans array is not available.  相似文献   

12.
Photoinduced electron transfer has been observed in a molecular triad, consisting of a porphyrin (P) covalently linked to a tetrathiafulvalene (TTF) and a fullerene derivative (C(60)), in the different phases of the liquid crystal E-7 and in a glass of 2-methyltetrahydrofuran (2-MeTHF) by means of time-resolved electron paramagnetic resonance (EPR) spectroscopy. In both solvents, an EPR signal observed immediately after excitation has been assigned to the radical pair TTF(*+)-P-C(60)(*-), based on its magnetic interaction parameters and spin polarization pattern. In the 2-MeTHF glass and the crystalline phase of E-7, the TTF(*+)-P-C(60)(*-) state is formed from the TTF-(1)P-C(60) singlet state via an initial TTF-P(*+)-C(60)(*-) charge-separated state. Long-lived charge separation ( approximately 8 mus) for the singlet-born radical pair is observed in the 2-MeTHF glass at cryogenic temperatures. In the nematic phase of E-7, a high degree of ordering in the liquid crystal is achieved by the molecular triad. In this phase, both singlet- and triplet-initiated electron transfer routes are concurrently active. At room temperature in the presence of the external magnetic field, the triplet-born radical pair (T)(TTF(*+)-P-C(60)(*-)) has a lifetime of approximately 7 mus, while that of the singlet-born radical pair (S)(TTF(*+)-P-C(60)(*-)) is much shorter (<1 mus). The difference in lifetimes is ascribed to spin dynamic effects in the magnetic field.  相似文献   

13.
Self-assembly of robust perylenediimide chromophores is used to produce an artificial light-harvesting antenna structure that in turn induces self-assembly of a functional special pair that undergoes ultrafast, quantitative charge separation. The structure consists of four 1,7-(3',5'-di-tert-butylphenoxy)perylene-3,4:9,10-perylene-3,4:9,10-bis(carboximide) (PDI) molecules attached to a single 1,7-bis(pyrrolidin-1-yl)perylene-3,4:9,10-perylene-3,4:9,10-bis(carboximide) (5PDI) core, which self-assembles to form (5PDI-PDI4)2 in toluene. The system is characterized using both structural methods (NMR, SAXS, mass spectroscopy, and GPC) and photophysical methods (UV-vis, time-resolved fluorescence, and femtosecond transient absorption spectroscopy). Energy transfer from (PDI)2 to (5PDI)2 occurs with tau = 21 ps, followed by excited-state symmetry breaking of 1*(5PDI)2 to produce 5PDI*+-5PDI*- quantitatively with tau = 7 ps. The ion pair recombines with tau = 420 ps. Electron transfer occurs only in the dimeric system and does not occur in the disassembled monomer, thus mimicking both antenna and special pair function in photosynthesis.  相似文献   

14.
A supramolecular binding occurred between lithium ion encapsulated [60]fullerene (Li(+)@C(60)) and sulfonated tetraphenylporphyrins ([MTPPS](4-) M = H(2) and Zn) in a benzonitrile solution. Photoexcitation of Li(+)@C(60)/[MTPPS](4-) results in formation of a long-lived charge-separated state by photoinduced electron transfer.  相似文献   

15.
A new low band gap copolymer PBB3 containing [6,6']bi[thieno[3,4-b]thiophenyl]-2,2'-dicarboxylic acid bis-(2-butyloctyl) ester (BTT) and 4,8-bis(2-butyloctyl)benzo[1,2-b:4,5-b']dithiophene (BDT) units was synthesized and tested for solar cell efficiency. PBB3 showed a broad absorbance in the near-IR region with a substantially red-shifted (by more than 100 nm) λ(max) at 790 nm as compared to the PTB series of polymers, which have been previously reported. The PBB3 polymer also showed both a favorable energy level match with PCBM (with a LUMO energy level of -3.29 eV) and a favorable film domain morphology as evidenced by TEM images. Despite these seemingly optimal parameters, a bulk heterojunction (BHJ) photovoltaic device fabricated from a blend of PBB3 and PC(71)BM showed an overall power conversion efficiency (PCE) of only 2.04% under AM 1.5G/100 mW cm(-2). The transient absorption spectra of PBB3 showed the absence of cationic and pseudo charge transfer states that were observed previously in the PTB series polymers, which were also composed of alternating thienothiophene (TT) and BDT units. We compared the spectral features and electronic density distribution of PBB3 with those of PTB2, PTB7, and PTBF2. While PTB2 and PTB7 have substantial charge transfer characteristics and also relatively large local internal dipoles through BDT to TT moieties, PTBF2 and PBB3 have minimized internal dipole moments due to the presence of two adjacent TT units (or two opposing fluorine atoms in PTBF2) with opposite orientations or internal dipoles. PBB3 showed a long-lived excitonic state and the slowest electron transfer dynamics of the series of polymers, as well as the fastest recombination rate of the charge-separated (CS) species, indicating that electrons and holes are more tightly bound in these species. Consequently, substantially lower degrees of charge separation were observed in both PBB3 and PTBF2. These results show that not only the energetics but also the internal dipole moment along the polymer chain may be critical in maintaining the pseudocharge transfer characteristics of these systems, which were shown to be partially responsible for the high PCE device made from the PTB series of low band gap copolymers.  相似文献   

16.
Semiempirical Hartree-Fock techniques have been applied to assess the molecular parameters governing the efficiency of photoinduced charge generation and recombination processes in donor/acceptor complexes involving a three-ring oligophenylenevinylene as donor and perylene bisimide as acceptor. The corresponding rates have been estimated in the framework of the Marcus-Levich-Jortner formalism for different geometries of the complexes. The results indicate that dissociation pathways involving the lowest two charge transfer excited states contribute significantly to the dynamics of the whole process. The rates are found to be strongly sensitive to the relative position of the donor and acceptor units and can be rationalized in terms of symmetry arguments applied to relevant electronic levels.  相似文献   

17.
Silicon phthalocyanine (SiPc) with two axially attached morpholine (MP) units was prepared, and its photophysics was studied by laser flash photolysis, steady state and time-resolved fluorescence methods. Both the fluorescence efficiency and lifetime of SiPc moiety were remarkably quenched, because of the efficient intramolecular photoinduced electron transfer (PET) from morpholine donors to SiPc moiety. The generated charge separation state (CSS), SiPc(?-)-MP(?+), which was observed by transient absorption spectra, showed a lifetime of 4.8 ns. The triplet quantum yield of SiPc unit in the supra-molecule is unexpectedly high, and the predominant spectral signal in microsecond-scale is triplet-triplet (T(1)-T(n)) absorption. This high triplet yield is due to the charge recombination of CSS that generates T(1) in 32% efficiency: SiPc(?-)-MP(?+) → (3)SiPc-MP. The T(1) formation process occurred efficiently because the CSS SiPc(?-)-MP(?+) has a higher energy (1.65 eV) than that of the triplet state (3)SiPc-MP (1.0 eV). Emission from the CSS was also observed: SiPc(?-)-MP(?+) → SiPc-MP + hν'.  相似文献   

18.
The excited-state dynamics of a series of electron donor-acceptor bridged systems (DABS) consisting of a boron-dipyrromethene chromophore covalently linked to a dinitro-substituted triptycene has been investigated using femtosecond time-resolved spectroscopy. The chromophores differ by the number of bromine atom substituents. The fluorescence lifetime of the DABS without any bromine atom is strongly reduced when going from toluene to polar solvents, this shortening being already present in chloroform. This effect is about 10 times weaker with a single bromine atom and negligible with two bromine atoms on the chromophore. The excited-state lifetime shortening is ascribed to a charge transfer from the excited chromophore to a nitrobenzene moiety, the driving force of this process depending on the number of bromine substituents. The occurrence of this process is further confirmed by the investigation of the excited-state dynamics of the chromophore alone in pure nitrobenzene. Surprisingly, no correlation between the charge separation time constant and the dielectric properties of the solvents could be observed. However, a good correlation between the charge separation time constant and the diffusional reorientation time of the chromophore alone, measured by fluorescence anisotropy, was found. Quantum chemistry calculations suggest that quasi-free rotation about the single bond linking the chromophore to the triptycene moiety permits a sufficient coupling of the donor and the acceptor to ensure efficient charge separation. The charge separation dynamics in these molecules is thus controlled by the reorientational motion of the donor relative to the acceptor.  相似文献   

19.
Photoinduced charge separation of fullerodendrimers with carboxylates at terminal sites (C60 approximately COO-) has been found in aqueous media. Time-resolved transient absorption and fluorescence measurements of the fullerodendrimers demonstrated that charge separation takes place from the terminal carboxylate anion to the central excited singlet state of C60, generating C60*- approximately COO* with high quantum efficiency in aqueous solution. In the presence of viologen dication and a sacrificial donor, the persistent viologen radical cation was generated.  相似文献   

20.
A dyad composed of fluorescein and 2-methyl-anthraquinone (FL-AQ) was synthesized and its photophysical properties were examined by absorption, fluorescence spectroscopy, and fluorescence lifetime. The charge-separated state formed by photoinduced intramolecular electron transfer was detected by nanosecond transient absorption spectroscopy for the first time. When FL is excited in solution, the photoinduced electron transfer from FL to AQ proceeds efficiently. The rate constant and the efficiency of intramolecular electron transfer are 3.95 x 10(9) s(-1) and 95%, respectively. Its charge-separated state lifetime is too short to detect by transient absorption spectroscopy. Adding nanometer colloidal TiO(2) to an FL-AQ ethanol solution prolongs the lifetime of the charge-separated state, so its transient absorption signal is recorded significantly. The lifetimes of FL(+). at 480 nm and AQ(-). at 560 nm in the FL-AQ/TiO(2) colloidal system are 11.1 and 8.93 mivros, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号