首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Depending on the synthetic conditions, five heterometallic Mn(III)Fe(II) polynuclear compounds with the same ratio of constituents, 2[Mn(acacen)](+)/[Fe(CN)(5)NO](2-), of different nuclearity and dimensionality (0D, 1D, 2D) were isolated. A [Mn(acacen)MeOH](2)[Fe(CN)(5)NO]·1.5MeOH, 1 complex has been prepared by reaction of Mn(III)/Schiff base (SB) complex, [Mn(acacen)Cl] (H(2)acacen is N,N'-ethylenebis(acetylacetoneimine)) with sodium nitroprusside (NP). Single crystal X-ray diffraction analyses reveal that crystallization of 1 from coordinating or non-coordinating solvents results in different coordination polynuclear materials: from C(2)H(5)OH [{Mn(acacen)H(2)O}(2)Fe(CN)(5)NO]·C(2)H(5)OH, 2, a trinuclear complex is formed; from CH(3)CN [{Mn(acacen)H(2)O}(4)Fe(CN)(5)NO][Fe(CN)(5)NO]·4CH(3)CN, an ionic compound with a pentanuclear bimetallic cation is formed 3; from i-C(3)H(7)OH [{Mn(acacen)}(2)(i-PrOH)Fe(CN)(5)NO](n), a coordination chain polymer 4 is formed; from toluene [{Mn(acacen)}(2)Fe(CN)(5)NO](n), a layered network 5 is formed. As the magnetic measurements show, for all compounds the weak interaction between Mn(III)S = 2 spins through the NP bridge is antiferromagnetic and exhibits no significant photoactivity.  相似文献   

2.
The first known paramagnetic, tetrahedral cyanide complex, [Mn(II)(CN)(4)](2)(-), is formed by the photoinduced decomposition of [Mn(IV)(CN)(6)](2)(-) in nonaqueous solutions or by thermal decomposition in the solid state. In acetonitrile or dichloromethane, photoexcitation into the ligand-to-metal charge transfer band (lambda(max) = 25 700 cm(-1), epsilon = 3700 cm(-1) M(-1)) causes the homolytic cleavage of cyanide radicals and reduction of Mn(IV). Free cyanide in dichloromethane leads to the isolation of polycyanide oligomers such as [C(12)N(12)](2)(-) and [C(4)N(4)](-), which was crystallographically characterized as the PPN(+) salt C(40)H(30)N(5)P(2): monoclinic space group = I2/a, a = 18.6314(2) A, b = 9.1926(1) A, c = 20.8006(1), beta =106.176(2) degrees, Z = 4]. In the solid state Mn(IV)-CN bond homolysis is thermally activated above 122 degrees C, according to differential scanning calorimetry measurements, leading to the reductive elimination of cyanogen. The [Mn(II)(CN)(4)](2-) ion has a dynamic solution behavior, as evidenced by its concentration-dependent electronic and electron paramagnetic spectra, that can be attributed to aggregation of the coordinatively and electronically unsaturated (four-coordinate, 13-electron) metal center. Due to dynamics and lability of [Mn(II)(CN)(4)](2-) in solution, its reaction with divalent first-row transition metal cations leads to the formation of lattice compounds with both tetrahedral and square planar local coordination geometries of the metal ions and multiple structural and cyano-linkage isomers. alpha-Mn(II)[Mn(II)(CN)(4)] has an interpenetrating sphalerite- or diamond-like network structure with a unit cell parameter of a = 6.123 A (P43m space group) while a beta-phase of this material has a noninterpenetrating disordered lattice containing tetrahedral [Mn(II)(CN)(4)](2-). Linkage isomerization or cyanide abstraction during formation results in alpha-Mn(II)[Co(II)(CN)(4)] and Mn(II)[Ni(II)(CN)(4)] lattice compounds, both containing square planar tetracyanometalate centers. alpha-Mn(II)[Co(II)(CN)(4)] is irreversibly transformed to its beta-phase in the solid state by heating to 135 degrees C, which causes a geometric isomerization of [Co(II)(CN)(4)](2)(-) from square planar (nu(CN) = 2114 cm(-1), S = (1)/(2)) to tetrahedral (nu(CN) = 2158 cm(-1), S = (3)/(2)) as evidenced by infrared and magnetic susceptibility measurements. Mn(II)[Ni(II)(CN)(4)] is the only phase formed with Ni(II) due to the high thermodynamic stability of square planar [Ni(II)(CN)(4)](2)(-).  相似文献   

3.
Unusual spin coupling between Mo(III) and Mn(II) cyano-bridged ions in bimetallic molecular magnets based on the [Mo(III)(CN)(7)](4-) heptacyanometalate is analyzed in terms of the superexchange theory. Due to the orbital degeneracy and strong spin-orbit coupling on Mo(III), the ground state of the pentagonal-bipyramidal [Mo(III)(CN)(7)](4-) complex corresponds to an anisotropic Kramers doublet. Using a specially adapted kinetic exchange model we have shown that the Mo(III)-CN-Mn(II) superexchange interaction is extremely anisotropic: it is described by an Ising-like spin Hamiltonian JS(z)(Mo) S(z)(Mn) for the apical pairs and by the J(z)S(z)(Mo) S(z)(Mn) + J(xy)(Sx(Mo) Sx(Mn) + Sy(Mo) Sy(Mn)) spin Hamiltonian for the equatorial pairs (in the latter case J(z) and J(xy) can have opposite signs). This anisotropy resulted from an interplay of several Ising-like (Sz(Mo) Sz(Mn)) and isotropic (S(Mo)S(Mn)) ferro- and antiferromagnetic contributions originating from metal-to-metal electron transfers through the pi and sigma orbitals of the cyano bridges. The Mo(III)-CN-Mn(II) exchange anisotropy is distinct from the anisotropy of the g-tensor of [Mo(III)(CN)(7)](4-); moreover, there is no correlation between the exchange anisotropy and g-tensor anisotropy. We indicate that highly anisotropic spin-spin couplings (such as the Ising-like JS(z)(Mo) S(z)(Mn)) combined with large exchange parameters represent a very important source of the global magnetic anisotropy of polyatomic molecular magnetic clusters. Since the total spin of such clusters is no longer a good quantum number, the spin spectrum pattern can differ considerably from the conventional scheme described by the zero-field splitting of the isotropic spin of the ground state. As a result, the spin reorientation barrier of the magnetic cluster may be considerably larger. This finding opens a new way in the strategy of designing single-molecule magnets (SMM) with unusually high blocking temperatures. The use of orbitally degenerate complexes with a strong spin-orbit coupling (such as [Mo(III)(CN)(7)](4-) or its 5d analogues) as building blocks is therefore very promising for these purposes.  相似文献   

4.
The syntheses, structures, and magnetic properties of a series of di- and trivalent hydridotris(3,5-dimethylpyrazol-1-yl)borate (Tp*) cyanomanganates are described. Treatment of tris(acetylacetonate)manganese(III) [Mn(acac)(3)] with KTp* and tetra(ethyl)ammonium cyanide affords [NEt(4)][(Tp*)Mn(II)(κ(2)-acac)(CN)] (1), as the first monocyanomanganate(II) complex; attempted oxidation of 1 with iodine affords {(Tp*)Mn(II)(κ(2)-acac(3-CN))}(n) (2) as a one-dimensional chain and bimetallic {[NEt(4)][(Tp*)Mn(II)(κ(2)-acac(3-CN))](2)(μ-CN) (3) as the major and minor products, respectively. A fourth complex, [NEt(4)][(Tp*)Mn(II)(η(2)-acac(3-CN))(η(1)-NC-acac)] (4), is obtained via treatment of Mn(acac(3-CN))(3) with KTp* and [NEt(4)]CN, while [NEt(4)](2)[Mn(II)(CN)(4)] (5) was prepared from manganese(II) trifluoromethanesulfonate and excess [NEt(4)]CN. Tricyanomanganate(III) complexes, [cat][(Tp*)Mn(III)(CN)(3)] [cat = NEt(4)(+), 7; PPN(+), 8], are prepared via sequential treatment of Mn(acac(3-CN))(3) with KTp*, followed by [NEt(4)]CN, or [cat](3)[Mn(III)(CN)(6)] with (Tp*)SnBu(2)Cl. Magnetic measurements indicate that 1, 2, and 4 contain isotropic Mn(II) (S = (5)/(2); g = 2.00) centers, and no long-range magnetic ordering is found above 1.8 K. Compounds 7 and 8 contain S = 1 Mn(III) centers that adopt singly degenerate spin ground states without orbital contributions to their magnetic moments.  相似文献   

5.
Treatment of [HNBu3]3[Mo(V)(CN)8] with manganese(II) p-toluenesulfonate in N,N'-dimethylformamide (DMF) affords {[Mn(II)(DMF)4]3[Mo(V)(CN)8]2}n (1) as a two-dimensional network. The structure of 1 consists of [cis-Mn(II)(DMF)4(mu-NC)2]2+ and [trans-Mn(II)(DMF)4(mu-NC)2]2+ units that are linked via cyanides to three-connected [Mo(V)(CN)5(mu-CN)3]3- centers in a 4:2:6 ratio, forming 12-membered rings. Magnetic measurements indicate that 1 is a ferrimagnet (TN = 8 K) that exhibits frequency-dependent behavior in chi". Heating of 1 affords an additional magnetic phase (TN = 21 K) that is absent of linkage isomerism.  相似文献   

6.
Treatment of [M(II)(en)(3)][OTs](2) or methanolic ethylenediamine solutions containing transition metal p-toluenesulfonates (M(II) = Mn, Co) with aqueous K(4)M(IV)(CN)(8).2H(2)O or Cs(3)M(V)(CN)(8) (M(IV) = Mo, W; M(V) = Mo) affords crystalline clusters of [M(II)(en)(3)][cis-M(II)(en)(2)(OH(2))(mu-NC)M(IV)(CN)(7)].2H(2)O (M(IV) = Mo; M(II) = Mn, 1; Ni, 5; M(IV) = W; M(II) = Mn, 2; Ni, 6) and [cis-M(II)(en)(2)(OH(2))](2)[(mu-NC)(2)M(IV)(CN)(6)].4H(2)O (M(IV) = Mo; M(II) = Co, 3; Ni, 7; M(IV) = W; M(II) = Co, 4) stoichiometry. Each cluster contains cis-M(II)(en)(2)(OH(2))(mu-NC)(2+) units that likely result from dissociative loss of en from [M(II)(en)(3)](2+), affording cis-M(II)(en)(2)(OH(2))(2)(2+) intermediates that are trapped by M(IV)(CN)(8)(4-).  相似文献   

7.
A Prussian blue (PB) type material containing hexacyanovanadate(III), Mn(II)1.5[V(III)(CN)6].(0.30)MeCN (1), was formed from the reaction of [V(III)(CN)6](3-) with [Mn(NCMe)6](2+) in MeCN. This new material exhibits ferrimagnetic spin- or cluster-glass behavior below a Tc of 12K with observed magnetic hysteresis at 2 K (Hcr = 65 Oe and Mrem = 730 emu.Oe/mol). Reactions of [V(III)(CN)6](3-) with [M(II)(NCMe)6](2+) (M = Fe, Co, Ni) in MeCN lead to either partial (M = Co) or complete (M = Fe, Ni) linkage isomerization, resulting in compounds of Fe(II)(0.5)V(III)[Fe(II)(CN)6].(0.85)MeCN (2), (NEt4)(0.10)Co(II)(1.5- a)V(II)a[Co(III)(CN)6]a [V(III)(CN)6](1-a)(BF4)(0.10).(0.35)MeCN (3), and (NEt4)(0.20)V(III)[Ni(II)(CN)4](1.6).(0.10)MeCN (4) compositions. Compounds 2-4 do not magnetically order as a consequence of diamagnetic cyanometalate anions being present, i.e., [Fe(II)(CN)6](4-), [Co(III)(CN)6](3-), and [Ni(II)(CN)4](2-). Incorporation of [V(III)(CN)6](3-) into PB-type materials is synthetically challenging because of the lability of the cyanovanadate(III) anion.  相似文献   

8.
[NH(4)](2)Mn(3)(H(2)O)(4)[Mo(CN)(7)](2).4H(2)O (1) has been synthesized by slow diffusion of aqueous solutions containing K(4)[Mo(CN)(7)].2H(2)O, [Mn(H(2)O)(6)](NO(3))(2), and (NH(4))NO(3). Compound 1 crystallizes in the monoclinic C2/c space group. The basic motif of the three-dimensional structure consists of a Mo1-Mn1 gridlike sheet parallel to the bc plane. Two of these sheets are connected through CN-Mn2-NC linkages to form a bilayer reminiscent of the K(2)Mn(3)(H(2)O)(6)[Mo(CN)(7)](2).6H(2)O (2) two-dimensional structure. In 1, [NH(4)](+) cations allow these bilayers to be connected through direct Mo1-CN-Mn1 bridges to form a three-dimensional network, whereas in 2, they are isolated by (H(2)O)K(+) cations. As shown by the magnetic measurements, this increase of dimensionality by counterion substitution induces an enhancement of the ferrimagnetic critical temperature from 39 K in 2 to 53 K in 1.  相似文献   

9.
The syntheses and structural and physical characterization of the compounds [Cu(bipy)(2)](2)[Mo(CN)(8)].5H(2)O. CH(3)OH (1) with bipy = 2,2'-bipyridine and M(II)(2)[Mo(IV)(CN)(8)].xH(2)O (2 with M = Cu, x = 7.5; 3 with M = Mn, x = 9.5) are presented. 1 crystallizes in the triclinic space group P1; (a = 11.3006(4) A, b = 12.0886(5) A, c = 22.9589(9) A, alpha = 81.799(2) degrees, beta = 79.787(2) degrees, gamma = 62.873(2) degrees, Z = 2). The structure of 1 consists of neutral trinuclear molecules in which a central [Mo(CN8)](4-) anion is linked to two [Cu(bipy)2](2+) cations through two cyanide bridges. 2 crystallizes poorly, and hence, structural information has been obtained from the wide-angle X-ray scattering (WAXS) technique, by comparison with 3 and Fe(II)(2)(H(2)O)(4)[Mo(IV)(CN)(8)].4H(2)O whose X-ray structure has been previously solved. 2, 3, and Fe(II)(2)(H(2)O)(4)[Mo(IV)(CN)(8)].4H(2)O form extended networks with all the cyano groups acting as bridges. The magnetic properties have shown that 1 and 2 behave as paramagnets. Under irradiation with light, they exhibit important modifications of their magnetic properties, with the appearance at low temperature of magnetic interactions. For 1 the modifications are irreversible, whereas they are reversible for 2 after cycling in temperature. These photomagnetic effects are thought to be caused by the conversion of Mo(IV) (diamagnetic) to Mo(V)(paramagnetic) through a photooxidation mechanism for 1 and a photoinduced electron transfer in 2. These results have been correlated with the structural features.  相似文献   

10.
Zhang YZ  Gao S  Wang ZM  Su G  Sun HL  Pan F 《Inorganic chemistry》2005,44(13):4534-4545
Six heterometallic compounds based on the building block [Cr(bpy)(CN)4]- (bpy = 2,2'-bipyridine) with secondary and/or tertiary coligands as modulators, {Mn(H2O)2[Cr(bpy)(CN)4]2}n (1), {Mn(bpy)(H2O)[Cr(bpy)(CN)4]2 x H2O}n (2), [Mn(bpy)2][Cr(bpy)(CN)4]2 x 5H2O (3), {[Mn(dca)(bpy)(H2O)][Cr(bpy)(CN)4] x H2O}n (4) (dca = N(CN)2(-)), {Mn(N3)(CH3OH)[Cr(bpy)(CN)4] x 2H2O}n (5), and {Mn(bpy)(N3)(H2O)[Cr(bpy)(CN)4] x H2O}2 (6), have been prepared and characterized structurally and magnetically. X-ray crystallography reveals that the compounds 1, 2, 4, and 5 consist of one-dimensional (1D) chains with different structures: a 4,2-ribbon-like chain, a branched zigzag chain, a 2,2-CC zigzag chain, and a 3,3-ladder-like chain, respectively. It also reveals that compound 3 has a trinuclear [MnCr2] structure, and compound 6 has a tetranuclear [Mn2Cr2] square structure. Magnetic studies show antiferromagnetic interaction between Cr(III) and Mn(II) ions in all compounds. All of the chain compounds exhibit metamagnetic behaviors with different critical temperatures (Tc) and critical fields (Hc; at 1.8 K): 3.2 K and 3.0 kOe for 1; 2.3 K and 4.0 kOe for 2; 2.1 K and 1.0 kOe for 4; and 4.7 K and 5.0 kOe for 5, respectively. The noncentrosymmetric compound 2 is also a weak ferromagnet at low temperature because of spin canting. The magnetic analyses reveal Cr-Mn intermetallic magnetic exchange constants, J, of -4.7 to -9.4 cm(-1) (H = -JS(Cr) x S(Mn)). It is observed that the antiferromagnetic interaction through the Mn-N-C-Cr bridge increases as the Mn-N-C angle (theta) decreases to the range of 155-180 degrees, obeying an empirical relationship: J = -40 + 0.2theta. This result suggests that the best overlap between t(2g) (high-spin Mn(II)) and t(2g) (low-spin Cr(III)) occurs at an angle of approximately 155 degrees.  相似文献   

11.
The reaction of [Fe(III)L(CN)(3)](-) (L being bpca = bis(2-pyridylcarbonyl)amidate, pcq = 8-(pyridine-2-carboxamido)quinoline) or [Fe(III)(bpb)(CN)(2)](-) (bpb = 1,2-bis(pyridine-2-carboxamido)benzenate) ferric complexes with Mn(III) salen type complexes afforded seven new bimetallic cyanido-bridged Mn(III)-Fe(III) systems: [Fe(pcq)(CN)(3)Mn(saltmen)(CH(3)OH)]·CH(3)OH (1), [Fe(bpca)(CN)(3)Mn(3-MeO-salen)(OH(2))]·CH(3)OH·H(2)O (2), [Fe(bpca)(CN)(3)Mn(salpen)] (3), [Fe(bpca)(CN)(3)Mn(saltmen)] (4), [Fe(bpca)(CN)(3)Mn(5-Me-saltmen)]·2CHCl(3) (5), [Fe(pcq)(CN)(3)Mn(5-Me-saltmen)]·2CH(3)OH·0.75H(2)O (6), and [Fe(bpb)(CN)(2)Mn(saltmen)]·2CH(3)OH (7) (with saltmen(2-) = N,N'-(1,1,2,2-tetramethylethylene)bis(salicylideneiminato) dianion, salpen(2-) = N,N'-propylenebis(salicylideneiminato) dianion, salen(2-) = N,N'-ethylenebis(salicylideneiminato) dianion). Single crystal X-ray diffraction studies were carried out for all these compounds indicating that compounds 1 and 2 are discrete dinuclear [Fe(III)-CN-Mn(III)] complexes while systems 3-7 are heterometallic chains with {-NC-Fe(III)-CN-Mn(III)} repeating units. These chains are connected through π-π and short contact interactions to form extended supramolecular networks. Investigation of the magnetic properties revealed the occurrence of antiferromagnetic Mn(III)···Fe(III) interactions in 1-4 while ferromagnetic Mn(III)···Fe(III) interactions were detected in 5-7. The nature of these Mn(III)···Fe(III) magnetic interactions mediated by a CN bridge appeared to be dependent on the Schiff base substituent. The packing is also strongly affected by the nature of the substituent and the presence of solvent molecules, resulting in additional antiferromagnetic interdinuclear/interchain interactions. Thus the crystal packing and the supramolecular interactions induce different magnetic properties for these systems. The dinuclear complexes 1 and 2, which possess a paramagnetic S(T) = 3/2 ground state, interact antiferromagnetically in their crystal packing. At high temperature, the complexes 3-7 exhibit a one-dimensional magnetic behavior, but at low temperature their magnetic properties are modulated by the supramolecular arrangement: a three-dimensional antiferromagnetic order with a metamagnetic behavior is observed for 3, 4, and 7, and Single-Chain Magnet properties are detected for 5 and 6.  相似文献   

12.
Reactions of [W(CN)(8)](3-/4-) anions with complexes of Mn(2+) ion with tridentate organic ligand 2,4,6-tris(2-pyridyl)-1,3,5-triazine (tptz) lead to a series of heterobimetallic complexes. The crystal structures of these compounds are derived from the same basic structural fragment, namely a W(2)Mn(2) square constructed of alternating cyanide-bridged W and Mn ions. In [Mn(II)(tptz)(OAc)(H(2)O)(2)](2){[Mn(II)(tptz)(MeOH)(1.58)(H(2)O)(0.42)](2)[W(V)(CN)(8)](2)}.5 MeOH.9.85 H(2)O (3), isolated molecular squares are co-crystallized with mononuclear cationic Mn(II) complexes. The structure of {[Mn(II)(tptz)(MeOH)](2)[W(IV)(CN)(8)].2 MeOH}(infinity) (4) is based on an infinite chain of vertex-sharing squares, while {[Mn(II) (2)(tptz)(2)(MeOH)(3)(OAc)][W(V)(CN)(8)].3.5 MeOH0.25 H(2)O}(infinity) (5) and {[Mn(II) (2)(tptz)(2)(MeOH)(3)W(V)(CN)(8)][Mn(II)(tptz)(MeOH)W(V)(CN)(8)].2 H(2).OMeOH}(8) (7) are derived from such an infinite chain by removing one of the W-C[triple bond]N-Mn linkages in each of the squares. The decanuclear cluster [Mn(II) (6)(tptz)(6)(MeOH)(4)(DMF)(2)W(V) (4)(CN)(32)].8.2 H(2)O.2.3 MeOH (6) is a truncated version of structure 4 and consists of three vertex-sharing W(2)Mn(2) squares. The structure of [Mn(II)(tptz)(MeOH)(NO(3))](2)[Mn(II)(tptz)(MeOH) (DMF)](2)[W(V)(CN)(8)](2).6 MeOH (8) consists of a hexanuclear cluster, in which the central W(2)Mn(2) square is extended by two Mn side-arms attached via CN(-) ligands to the W corners of the square. The magnetic behavior of these heterobimetallic complexes (except for 4) is dominated by antiferromagnetic coupling between Mn(II) and W(V) ions mediated by cyanide bridges. Compounds 3, 6, and 8 exhibit high spin ground states of S=4, 13, and 9, respectively, while 5 and 7 exhibit behavior typical of a ferrimagnetic chain with alternating spin centers. Complex 4 contains diamagnetic W(IV) centers but holds promise as a potential photomagnetic solid.  相似文献   

13.
Ni ZH  Kou HZ  Zheng L  Zhao YH  Zhang LF  Wang RJ  Cui AL  Sato O 《Inorganic chemistry》2005,44(13):4728-4736
Two new cyano-bridged heterobinuclear complexes, [Mn(II)(phen)2Cl][Fe(III)(bpb)(CN)2] x 0.5CH3CH2OH x 1.5H2O (1) and [Mn(II)(phen)2Cl][Cr(III)(bpb)(CN)2] x 2H2O (2) [phen = 1,10-phenanthroline; bpb(2-) = 1,2-bis(pyridine-2-carboxamido)benzenate], and four novel azido-bridged Mn(II) dimeric complexes, [Mn2(phen)4(mu(1,1)-N3)2][M(III)(bpb)(CN)2]2 x H2O [M = Fe (3), Cr (4), Co (5)] and [Mn2(phen)4(mu(1,3)-N3)(N3)2]BPh4 x 0.5H2O (6), have been synthesized and characterized by single-crystal X-ray diffraction analysis and magnetic studies. Complexes 1 and 2 comprise [Mn(phen)2Cl]+ and [M(bpb)(CN)2]- units connected by one cyano ligand of [M(bpb)(CN)2]-. Complexes 3-5 are doubly end-on (EO) azido-bridged Mn(II) binuclear complexes with two [M(bpb)(CN)2]- molecules acting as charge-compensating anions. However, the Mn(II) ions in complex 6 are linked by a single end-to-end (EE) azido bridging ligand with one large free BPh4(-) group as the charge-balancing anion. The magnetic coupling between Mn(II) and Fe(III) or Cr(III) in complexes 1 and 2 was found to be antiferromagnetic with J(MnFe) = -2.68(3) cm(-1) and J(MnCr) = -4.55(1) cm(-1) on the basis of the Hamiltonian H = -JS(Mn)S(M) (M = Fe or Cr). The magnetic interactions between two Mn(II) ions in 3-5 are ferromagnetic in nature with the magnetic coupling constants of 1.15(3), 1.05(2), and 1.27(2) cm(-1) (H = -JS(Mn1)S(Mn2)), respectively. The single EE azido-bridged dimeric complex 6 manifests antiferromagnetic interaction with J = -2.29(4) cm(-1) (H = -JS(Mn1)S(Mn2)). Magneto-structural correlationship on the EO azido-bridged Mn(II) dimers has been investigated.  相似文献   

14.
The synthesis, structures, and magnetic properties of a family of isostructural "bell-shaped" heterometallic coordination clusters [Mn(III)(9)Mn(II)(2)La(III)(2)(μ(4)-O)(7)(μ(3)-O)(μ(3)-OH)(2)(piv)(10.8)(O(2)CC(4)H(3)O)(6.2)(NO(3))(2)(OH(2))(1.5)(MeCN)(0.5)]·12CH(3)CN·2H(2)O (1) and [Mn(III)(9)Mn(II)(2)Ln(2)(μ(4)-O)(7)(μ (3)-O)(μ(3)-OH)(2)(piv)(10.6)(O(2)CC(4)H(3)O)(6.4)(NO(3))(2)(OH(2))]·nCH(3)CN·H(2)O (Ln = Pr(III), n = 8 (2); Ln = Nd(III), n = 10 (3); Ln = Eu(III), n = 17 (4); Ln = Gd(III), n = 13 (5); piv = pivalate) are reported. The complexes were obtained from the reaction of [Mn(III)(2)Mn(II)(4)O(2)(piv)(10)(4-Me-py)(2.5)(pivH)(1.5)] and Ln(NO(3))(3)·6H(2)O in the presence of 2-furan-carboxylic acid (C(4)H(3)OCOOH) in CH(3)CN. Compounds 1-5 are isomorphous, crystallizing in the triclinic space group P1 with Z = 2. The Mn(III) and Mn(II) centers together form the shell of the bell, while the two Ln(III) centers can be regarded as the bell's clapper. The magnetic properties of 1-4 reveal dominant antiferromagnetic interactions between the magnetic centers leading to small spin ground states; while those of 5 indicate similar antiferromagnetic interactions between the manganese ions but with unusually strong ferromagnetic interactions between the Gd(III) ions leading to a large overall spin ground state of S = 11-12. While ac and dc magnetic measurements confirmed that Mn(11)Gd(2) (5) is a single-molecule magnet (SMM) showing hysteresis loops at low temperatures, compounds 1-4 do not show any slow relaxation of the magnetization, indicating that the S = 7 spin of the ferromagnetic Gd(2) unit in 5 is a necessary contribution to its SMM behavior.  相似文献   

15.
The reaction of Mn(II) and [NEt(4)]CN leads to the isolation of solvated [NEt(4)]Mn(3)(CN)(7) (1) and [NEt(4)](2) Mn(3)(CN)(8) (2), which have hexagonal unit cells [1: R3m, a = 8.0738(1), c = 29.086(1)??; 2: P3m1, a = 7.9992(3), c = 14.014(1)??] rather than the face centered cubic lattice that is typical of Prussian blue structured materials. The formula units of both 1 and 2 are composed of one low- and two high-spin Mn(II) ions. Each low-spin, octahedral [Mn(II)(CN)(6)](4-) bonds to six high-spin tetrahedral Mn(II) ions through the N?atoms, and each of the tetrahedral Mn(II) ions are bound to three low-spin octahedral [Mn(II)(CN)(6)](4-) moieties. For 2, the fourth cyanide on the tetrahedral Mn(II) site is C?bound and is terminal. In contrast, it is orientationally disordered and bridges two tetrahedral Mn(II) centers for 1 forming an extended 3D network structure. The layers of octahedra are separated by 14.01?? (c?axis) for 2, and 9.70?? (c/3) for 1. The [NEt(4)](+) cations and solvent are disordered and reside between the layers. Both 1 and 2 possess antiferromagnetic superexchange coupling between each low-spin (S = 1/2) octahedral Mn(II) site and two high-spin (S = 5/2) tetrahedral Mn(II) sites within a layer. Analogue 2 orders as a ferrimagnet at 27(±1)?K with a coercive field and remanent magnetization of 1140?Oe and 22,800?emuOe?mol(-1), respectively, and the magnetization approaches saturation of 49,800?emuOe?mol(-1) at 90,000?Oe. In contrast, the bonding via bridging cyanides between the ferrimagnetic layers leads to antiferromagnetic coupling, and 3D structured 1 has a different magnetic behavior to 2. Thus, 1 is a Prussian blue analogue with an antiferromagnetic ground state [T(c) = 27?K from d(χT)/dT].  相似文献   

16.
Yeung WF  Lau PH  Lau TC  Wei HY  Sun HL  Gao S  Chen ZD  Wong WT 《Inorganic chemistry》2005,44(19):6579-6590
The synthesis, structures, and magnetic properties of four cyano-bridged M(II)Ru(III)2 compounds prepared from the paramagnetic Ru(III) building blocks, trans-[Ru(salen)(CN)2]- 1 [H2salen = N,N'-ethylenebis(salicylideneimine)] and trans-[Ru(acac)2(CN)2]- (Hacac = acetylacetone), are described. Compound 2, {Mn(CH3OH)4[Ru(salen)(CN)2]2}.6CH3OH.2H2O, is a trinuclear complex that exhibits antiferromagnetic coupling between Mn(II) and Ru(III) centers. Compound 3, {Mn(H2O)2[Ru(salen)(CN)2]2.H2O}n, has a 2-D sheetlike structure that exhibits antiferromagnetic coupling between Mn and Ru, leading to ferrimagnetic-like behavior. Compound 4, {Ni(cyclam)[Ru(acac)2(CN)2]2}.2CH3OH.2H2O (cyclam = 1,4,8,11-tetraazacyclotetradecane), is a trinuclear complex that exhibits ferromagnetic coupling. Compound 5, {Co[Ru(acac)2(CN)2]2}n, has a 3-D diamond-like interpenetrating network that exhibits ferromagnetic ordering below 4.6 K. The density functional theory (DFT) method was used to calculate the molecular magnetic orbitals and the magnetic exchange interaction between Ru(III) and M(II) (Mn(II), Ni(II)) ions.  相似文献   

17.
Fully reversible room temperature dehydration of 3D {Mn(II)2(imH)2(H2O)4[Nb(IV)(CN)8] x 4 H2O}n (1; imH = imidazole) of Tc = 25 K results in the formation of 3D ferrimagnet {[Mn(II)(imH)]2[Nb(IV)(CN)8]}n (2), with Tc = 62 K, the highest ever known for octacyanometalate-based compounds. The dramatic magnetostructural modifications in 2 provide the first example of magnetic spongelike behavior in an octacyanometallate-based assembly.  相似文献   

18.
A series of caesium manganese hexacyanoferrates is prepared; Cs(I)(1.78)Mn(II)[Fe(II)(CN)6]0.78[Fe(III)(CN)6](0.22) (1), Cs(I)(1.57)Mn(II)[Fe(II)(CN)6]0.57[Fe(III)(CN)6](0.43) (2), Cs(I)(1.51)Mn(II)[Fe(II)(CN)6]0.51[Fe(III)(CN)6](0.49) (3), and Cs(I)(0.94)Mn(II)[Fe(II)(CN)6]0.21[Fe(III)(CN)6](0.70).0.8H2O (4). 1-3 show charge-transfer phase transitions between the high-temperature (HT) and low-temperature (LT) phases with transition temperatures (T(1/2 downward arrow), T(1/2 upward arrow)) of (207 K, 225 K) (1), (190 K, 231 K) (2), and (175 K, 233 K) (3) at a cooling and warming rates of 0.5 K min(-1). Variable temperature IR spectra indicate that the valence states of the LT phases of 1-3 are Cs(I)(1.78)Mn(II)(0.78)Mn(III)(0.22)[Fe(II)(CN)6], Cs(I)(1.57)Mn(II)(0.57)Mn(III)(0.43)[Fe(II)(CN)6], and Cs(I)(1.51)Mn(II)(0.51)Mn(III)(0.49) [Fe(II)(CN)6], respectively. The XRD measurements for 1-3 show that crystal structures of the HT and LT phases are cubic structures (Fm3[combining macron]m), but the lattice constants decrease from the HT phase to the LT phase; a = 10.5446(17) --> 10.4280(7) A (1), 10.5589(17) --> 10.3421(24) A (2), and 10.5627(11) --> 10.3268(23) A (3). The magnetization vs. temperature curves and the magnetization vs. external magnetic field curves show that the LT phases are ferromagnetic with Curie temperatures of 4.3 (1), 5.0 (2), and 5.6 K (3). At a cooling rate of -0.5 K min(-1), 4 does not show the charge-transfer phase transition, but does show a behavior of zero thermal expansion with a thermal expansivity of +0.2 x 10(-6) K(-1) throughout the temperature range 300 and 20 K.  相似文献   

19.
Six Mo(IV)-Cu(II) complexes, [Cu(tpa)](2)[Mo(CN)(8)]·15H(2)O (1, tpa = tris(2-pyridylmethyl)amine), [Cu(tren)](2)[Mo(CN)(8)]·5.25H(2)O (2, tren = tris(2-aminoethyl)amine), [Cu(en)(2)][Cu(0.5)(en)][Cu(0.5)(en)(H(2)O)][Mo(CN)(8)]·4H(2)O (3, en = ethylenediamine), [Cu(bapa)](3)[Mo(CN)(8)](1.5)·12.5H(2)O (4, bapa = bis(3-aminopropyl)amine), [Cu(bapen)](2)[Mo(CN)(8)]·4H(2)O (5, bapen = N,N'-bis(3-aminopropyl)ethylenediamine), and [Cu(pn)(2)][Cu(pn)][Mo(CN)(8)]·3.5H(2)O (6, pn = 1,3-diaminopropane), were synthesized and characterized. Single-crystal X-ray diffraction analyses show that 1-6 have different structures varying from trinuclear clusters (1-2), a one-dimensional belt (3), two-dimensional grids (4-5), to a three-dimensional structure (6). Magnetic and ESR measurements suggest that 1-6 exhibit thermally reversible photoresponsive properties on UV light irradiation through a Mo(IV)-to-Cu(II) charge transfer mechanism. A trinuclear compound [Cu(II)(tpa)](2)[Mo(V)(CN)(8)](ClO(4)) (7) was synthesized as a model of the photoinduced intermediate.  相似文献   

20.
The syntheses, X-ray structures, and magnetic behaviors of two new cyano-bridged assemblies, the molecular [Mn(III)(salen)H2O]3[W(V)(CN)8].H2O (1) and one-dimensional [Mn(salen)(H2O)2]2[[Mn(salen)(H2O)][Mn(salen)]2[Mo(CN)(8)]].0.5ClO4.0.5OH.4.5H2O (2), are presented. Compound 1 crystallizes in the monoclinic system, has space group P2(1)/c, and has unit cell constants a = 13.7210(2) A, b = 20.6840(4) A, c = 20.6370(2) A, and Z = 4. Compound 2 crystallizes in the triclinic system, has space group P, and has unit cell dimensions a = 18.428(4) A, b = 18.521(3) A, c = 18.567(4) A, and Z = 2. The structure of 1 consists of the asymmetric V-shaped Mn-NC-W-NC-Mn-O(phenolate)-Mn molecules, where W(V) coordinates with [Mn(salen)H2O] and singly phenolate-bridged [Mn(salen)H2O]2 moieties through the neighboring cyano bridges. The [W(V)(CN)8]3- ion displays distorted square-antiprism geometry. The structure of 2 consists of the cyano-bridged [Mn3(III)Mo(IV)]n- repeating units linked by double phenolate bridges into one-dimensional zigzag chains. The Mn(III) centers are bound to Mo(IV) of square-antiprism geometry through the neighboring cyano bridges. The magnetic studies of 1 reveal the antiferromagnetic intramolecular interactions through the CN and phenolate bridges and the relatively weak intermolecular interactions. Compound 1 becomes antiferromagnetically ordered below TN = 4.6 K. The presence of the magnetic anisotropy is documented with the MH measurements carried out for both polycrystalline and single-crystal samples. At T = 1.9 K, the spin-flop transition is observed in the field of 18 kOe applied parallel to the bc plane, which is the easy plane of magnetization. Field dependence of magnetization of 1 shows field-induced metamagnetic behavior from the antiferromagnetic ground state of ST = 3/2 to the state of ST = 5/2. The magnetic properties of 2 indicate a weak antiferromagnetic interaction between Mn(III) centers in double-phenolate-bridged [Mn(III)(salen)]2 dinuclear subunits and a very weak ferromagnetic interaction between them through the diamagnetic [Mo(IV)(CN)8]4- spacer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号