首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
Cyclic voltammetry on the octahedral rhodium clusters with 12 bridging hydride ligands, [Rh6(PR3)6H12][BArF4]2 (R = Cy Cy-[H12]2+, R = iPr iPr-[H12]2+; [BArF4]- = [B{C6H3(CF3)2}4]-) reveals four potentially accessible redox states: [Rh6(PR3)6H12]0/1+/2+/3+. Chemical oxidation did not produce stable species, but reduction of Cy-[H12]2+ using Cr(eta6-C6H6)2 resulted in the isolation of Cy-[H12]+. X-ray crystallography and electrospray mass spectrometry (ESI-MS) show this to be a monocation, while EPR and NMR measurements confirm that it is a monoradical, S = 1/2, species. Consideration of the electron population of the frontier molecular orbitals is fully consistent with this assignment. A further reduction is mediated by Co(eta5-C5H5)2. In this case the cleanest reduction was observed with the tri-isopropyl phosphine cluster, to afford neutral iPr-[H12]. X-ray crystallography confirms this to be neutral, while NMR and magnetic measurements (SQUID) indicate an S =1 paramagnetic ground state. The clusters Cy-[H12]+ and iPr-[H12] both take up H2 to afford Cy-[H14]+ and iPr-[H14], respectively, which have been characterized by ESI-MS, NMR spectroscopy, and UV-vis spectroscopy. Inspection of the frontier molecular orbitals of S = 1 iPr-[H12] suggest that addition of H2 should form a diamagnetic species, and this is the case. The possibility of "spin blocking" in this H2 uptake is also discussed. Electrochemical investigations on the previously reported Cy-[H16]2+ [J. Am. Chem. Soc. 2006, 128, 6247] show an irreversible loss of H2 on reduction, presumably from an unstable Cy-[H16]+ species. This then forms Cy-[H12]2+ on oxidation which can be recharged with H2 to form Cy-[H16]2+. We show that this loss of H2 is kinetically fast (on the millisecond time scale). Loss of H2 upon reduction has also been followed using chemical reductants and ESI-MS. This facile, reusable gain and loss of 2 equiv of H2 using a simple one-electron redox switch represents a new method of hydrogen storage. Although the overall storage capacity is very low (0.1%) the attractive conditions of room temperature and pressure, actuation by the addition of a single electron, and rapid desorption kinetics make this process of interest for future H2 storage applications.  相似文献   

2.
This study investigated the effect of co-ingesting Natal plums (Carissa macrocarpa) and Marula nuts (Sclerocarya birrea) on the bioaccessibility and uptake of anthocyanins, antioxidant capacity, and the ability to inhibit α-glucosidase. A Natal plum–Marula nut bar was made by mixing the raw nuts and the fruit pulp in a ratio 1:1 (v/v). The cyanidin-3-O-sambubioside (Cy-3-Sa) and cyanidin-3-O-glucoside content (Cy-3-G) were quantified using the ultra-high performance liquid chromatography-quadrupole time-of-flight mass spectrometry (UHPLC/Q-TOF-MS). Inclusion of Natal plum in the Marula nut bar increased the Cy-3-Sa, Cy-3-G content, antioxidants capacity and α-glucosidase inhibition compared to ingesting Marula nut separately at the internal phase. Adding Natal plum to the Marula nut bar increased bioaccessibility of Cy-3-Sa, Cy-3-G, quercetin, coumaric acid, syringic acid and ferulic acid to 80.2% and 71.9%, 98.7%, 95.2%, 51.9% and 89.3%, respectively, compared to ingesting the Natal plum fruit or nut separately.  相似文献   

3.
Mixtures of nitroaromatic and nitramine explosive compounds and their degradation products were analyzed using electrokinetically driven separations with both indirect laser-induced fluorescence (IDLIF) and UV absorption detection. Complete separations of the 14-component mixture (EPA 8330) were achieved using both capillary electrochromatography (CEC) and micellar electrokinetic chromatography (MEKC). IDLIF detection was performed using an epifluorescence system with excitation provided by a 635 nm diode laser and micromolar concentrations of the dye Cy-5 as the visualizing agent. While the sensitivity of the two detection methods was similar for the nitroaromatic compounds, the nitramines could only be detected using UV absorption due to their low fluorescence quenching efficiency of Cy-5. The detection sensitivity using IDLIF was limited by low frequency oscillations in the fluorescence background. The oscillations increased with higher electric field strength and were attributed to thermal fluctuations caused by Joule heating. Due to the more conductive running buffer and higher separation currents used in MEKC, sensitive IDLIF detection could only be achieved using low (approximately 100 V/cm) field strengths, resulting in long analysis times. CEC separations, which are typically run with low conductivity mobile phases to avoid bubble formation, are less sensitive to this effect. In CEC separations with IDLIF detection a stable fluorescence background using Cy-5 could be established using only a nonporous stationary phase. In capillaries packed with porous silica particles, anomalous migration behavior was observed with charged dye molecules and a stable fluorescence background could not be established under electrokinetic flow. This is the first demonstration of IDLIF in packed channel CEC.  相似文献   

4.
We demonstrate a photoactivated surface coupling scheme for achieving spatial overlap between biomolecules of interest and optical near field excitation. Using aluminium nanoapertures, we obtained increased coupling efficiency of biotinylated capture probe oligos to the photoactivated surface due to ~3× nanoaperture enhancement of UV light. We further validate DNA sensor functionality via the hybridization of Cy-5 labeled target oligos, with up to 8× fluorescence enhancement obtained from a commercial microarray scanner. This generic photoimmobilization strategy is an essential step to realizing miniaturized plasmon enhanced detection arrays by virtue of localizing capture molecules to the region of plasmonic enhancement.  相似文献   

5.
A series of water-soluble sulfonato-Salen-type ligands derived from different diamines including 1,2-ethylenediamine (Et-1Et-4), 1,2-cyclohexanediamine (Cy-1 and Cy-2), 1,2-phenylenediamine (Ph-1Ph-3 and PhMe-1PhMe-4), and dicyano-1,2-ethenediamine (CN-1) has been designed and prepared. Sulfonate groups of ligands ensure good stability and solubility in water without affecting their excited state properties. These ligands exhibit strong UV/Vis-absorption and blue, green, or orange fluorescence. Time-dependent-density functional theory calculations have been undertaken to reveal the influence of ligand nature, especially sulfonate groups, on the frontier molecular orbitals. Since their fluorescence is selectively quenched by Cu2+, the sulfonato-Salen-type ligands can be used as highly selective and sensitive turn-off fluorescence sensors for the detection of Cu2+ in water and fluorescence imaging in living cells.  相似文献   

6.
Ammonolyses of mono(pentamethylcyclopentadienyl) titanium(IV) derivatives [Ti(eta5-C5Me5)X3] (X = NMe2, Me, Cl) have been carried out in solution to give polynuclear nitrido complexes. Reaction of the tris(dimethylamido) derivative [Ti(eta5-C5Me5)(NMe2)3] with excess of ammonia at 80-100 degrees C gives the cubane complex [[Ti(eta5-C5Me5)]4(mu3-N)4] (1). Treatment of the trimethyl derivative [Ti(eta5-C5Me5)Me3] with NH3 at room temperature leads to the trinuclear imido-nitrido complex [[Ti(eta/5-CsMes)(mu-NH)]3(mu3-N)] (2) via the intermediate [[Ti(eta5-C5Me5)Me]2(mu-NH)2] (3). The analogous reaction of [Ti(eta5-C5Me5)Me3] with 2,4,6-trimethylaniline (ArNH2) gives the dinuclear imido complex [[Ti(eta5-C5Me5)Me])2(mu-NAr)2] (4) which reacts with ammonia to afford [[Ti(eta5-C5Me5)(NH2)]2(mu-NAr)2] (5). Complex 2 has been used, by treatments with the tris(dimethylamido) derivatives [Ti(eta5-C5H5-nRn)(NMe2)3], as precursor of the cubane nitrido systems [[Ti4(eta5-C5Me5)3(eta5-C5H5-nRn)](mu3-N)4] [R = Me n = 5 (1), R = H n = 0 (6), R = SiMe3 n = 1 (7), R = Me n = 1 (8)] via dimethylamine elimination. Reaction of [Ti(eta5-C5Me5)Cl3] or [Ti(eta5-C5Me5)(NMe2)Cl2] with excess of ammonia at room temperature gives the dinuclear complex [[Ti2(eta5-C5Me5)2Cl3(NH3)](mu-N)] (9) where an intramolecular hydrogen bonding and a nonlineal nitrido ligand bridge the "Ti(eta5-C5Me5)Cl(NH3)" and "Ti(eta5-C5Me5)Cl2" moieties. The molecular structures of [[Ti(eta5-C5Me5)Me]2 (mu-NAr)2] (4) and [[Ti2(eta5-C5Me5)2Cl3(NH3)](mu-N)] (9) have been determined by X-ray crystallographic studies. Density functional theory calculations also have been conducted on complex 9 to confirm the existence of an intramolecular N-H...Cl hydrogen bond and to evaluate different aspects of its molecular disposition.  相似文献   

7.
The half-sandwich compounds [(eta(5)-C(5)Me(5))BeX] (X=Cl, 1 a; Br, 1 b), readily prepared from the reaction of the halides BeX(2) and M[C(5)Me(5)] (M=Na or K), are useful synthons for other (eta(5)-C(5)Me(5))Be organometallic compounds, including the alkyl derivatives [(eta(5)-C(5)Me(5))BeR] (R=Me, 2 a; CMe(3), 2 b; CH(2)CMe(3), 2 c; CH(2)Ph, 2 d). The latter compounds can be obtained by metathetical exchange of the halides 1 with the corresponding lithium reagent and exhibit NMR signals and other properties in accord with the proposed formulation. Attempts to make [(eta(5)-C(5)Me(5))BeH] have proved fruitless, probably due to instability of the hydride toward disproportionation into [Be(C(5)Me(5))(2)] and BeH(2). The half-sandwich iminoacyl [(eta(5)-C(5)Me(5))Be(C(NXyl)Cp')] and [(eta(5)-C(5)Me(4)H)Be(C(NXyl)Cp')]3, 6 where Xyl=C(6)H(3)-2,6-Me(2) and Cp'=C(5)Me(5) or C(5)Me(4)H, are formed when the beryllocenes [Be(C(5)Me(5))(2)], [Be(C(5)Me(4)H)(2)], and [Be(C(5)Me(5))(C(5)Me(4)H)] are allowed to react with CNXyl. Isolation of three different iminoacyl isomers from the reaction of the mixed-ring beryllocene [(eta(5)-C(5)Me(5))Be(eta(1)-C(5)Me(4)H)] and CNXyl, namely compounds 5 a, 5 b, and 6, provides compelling evidence for the existence in solution of different beryllocene isomers, generated in the course of two very facile processes that explain the solution dynamics of these metallocenes, that is the 1,5-sigmatropic shift of the Be(eta(5)-Cp') unit around the periphery of the eta(1)-Cp' ring, and the molecular inversion rearrangement that exchanges the roles of the two rings.  相似文献   

8.
(13)CO exchange studies of racemization catalyst (η(5)-Ph(5)C(5))Ru(CO)(2)Cl and (η(5)-Ph(5)C(5))Ru(CO)(2)(Ot-Bu) by (13)C NMR spectroscopy are reported. CO exchange for the active catalyst form, (η(5)-Ph(5)C(5))Ru(CO)(2)(Ot-Bu) is approximately 20 times faster than that for the precatalyst (η(5)-Ph(5)C(5))Ru(CO)(2)Cl. An inhibition on the rate of racemization of (S)-1-phenylethanol was observed on addition of CO. These results support the hypothesis that CO dissociation is a key step in the racemization of sec-alcohols by (η(5)-Ph(5)C(5))Ru(CO)(2)Cl, as also predicted by DFT calculations.  相似文献   

9.
Attempts to prepare mixed-ligand zinc-zinc-bonded compounds that contain bulky C(5)Me(5) and terphenyl groups, [Zn(2)(C(5)Me(5))(Ar')], lead to disproportionation. The resulting half-sandwich Zn(II) complexes [(η(5)-C(5)Me(5))ZnAr'] (Ar' = 2,6-(2,6-(i)Pr(2)C(6)H(3))(2)-C(6)H(3), 2; 2,6-(2,6-Me(2)C(6)H(3))(2)-C(6)H(3), 3) can also be obtained from the reaction of [Zn(C(5)Me(5))(2)] with the corresponding LiAr'. In the presence of pyr-py (4-pyrrolidinopyridine) or DBU (1,8-diazabicyclo[5.4.0]undec-7-ene), [Zn(2)(η(5)-C(5)Me(5))(2)] reacts with C(5)Me(5)OH to afford the tetrametallic complexes [Zn(2)(η(5)-C(5)Me(5))L(μ-OC(5)Me(5))](2) (L = pyr-py, 6; DBU, 8), respectively. The bulkier terphenyloxide Ar(Mes)O(-) group (Ar(Mes) = 2,6-(2,4,6-Me(3)C(6)H(2))(2)-C(6)H(3)) gives instead the dimetallic compound [Zn(2)(η(5)-C(5)Me(5))(OAr(Mes))(pyr-py)(2)], 7, that features a terminal Zn-OAr(Mes) bond. DFT calculations on models of 6-8 and also on the Zn-Zn-bonded complexes [Zn(2)(η(5)-C(5)H(5))(OC(5)H(5))(py)(2)] and [(η(5)-C(5)H(5))ZnZn(py)(3)](+) have been performed and reveal the nonsymmetric nature of the Zn-Zn bond with lower charge and higher participation of the s orbital of the zinc atom coordinated to the cyclopentadienyl ligand with respect to the metal within the pseudo-ZnL(3) fragment. Cyclic voltammetric studies on [Zn(2)(η(5)-C(5)Me(5))(2)] have been also carried out and the results compared with the behavior of [Zn(C(5)Me(5))(2)] and related magnesium and calcium metallocenes.  相似文献   

10.
Reaction of [WIr3(mu-CO)3(CO)8(eta-C5Me5)] (1c) with [W(C[triple bond]CPh)(CO)3(eta-C5H5)] afforded the edge-bridged tetrahedral cluster [W2Ir3(mu4-eta2-C2Ph)(mu-CO)(CO)9(eta-C5H5)(eta-C5Me5)] (3) and the edge-bridged trigonal-bipyramidal cluster [W3Ir3(mu4-eta2-C2Ph)(mu-eta2-C=CHPh)(Cl)(CO)8(eta-C5Me5)(eta-C5H5)2] (4) in poor to fair yield. Cluster 3 forms by insertion of [W(C[triple bond]CPh)(CO)3(eta-C5H5)] into Ir-Ir and W-Ir bonds, accompanied by a change in coordination mode from a terminally bonded alkynyl to a mu4-eta2 alkynyl ligand. Cluster 4 contains an alkynyl ligand interacting with two iridium atoms and two tungsten atoms in a mu4-eta2 fashion, as well as a vinylidene ligand bridging a W-W bond. Reaction of [WIr3(CO)11(eta-C5H5)] (1a) or 1c with [(eta-C5H5)(CO)2 Ru(C[triple bond]C)Ru(CO)2(eta-C5H5)] afforded [Ru2WIr3(mu5-eta2-C2)(mu-CO)3(CO)7(eta-C5H5)2(eta-C5R5)] [R = H (5a), Me (5c)] in low yield, a structural study of 5a revealing a WIr3 butterfly core capped and spiked by Ru atoms; the diruthenium ethyndiyl precursor has undergone Ru-C scission, with insertion of the C2 unit into a W-Ir bond of the cluster precursor. Reaction of [W2Ir2(CO)10(eta-C5H5)2] with the diruthenium ethyndiyl reagent gave [RuW2Ir2{mu4-eta2-(C2C[triple bond]C)Ru(CO)2(eta-C5H5)}(mu-CO)2(CO)6(eta-C5H5)3] (6) in low yield, a structural study of 6 revealing a butterfly W2Ir2 unit capped by a Ru(eta-C5H5) group resulting from Ru-C scission; the terminal C2 of a new ruthenium-bound butadiyndiyl ligand has been inserted into the W-Ir bond. Reaction between 1a, [WIr3(CO)11(eta-C5H4Me)] (1b), or 1c and [(eta-C5H5)(CO)3W(C[triple bond]CC[triple bond]C)W(CO)3(eta-C5H5)] afforded [W2Ir3{mu4-eta2-(C2C[triple bond]C)W(CO)3(eta-C5H5)}(mu-CO)2(CO)2(eta-C5H5)(eta-C5R5)] [R = H (7a), Me (7c); R5 = H4Me (7b)] in good yield, a structural study of 7c revealing it to be a metallaethynyl analogue of 3.  相似文献   

11.
The reaction of [(C(5)Me(5))(2)LaH](x) with BEt(3) is reported, and the solid-state structures of the lanthanum product (C(5)Me(5))(2)La[(mu-H)(mu-Et)(2)BEt], 1, and its THF adduct (C(5)Me(5))(2)La(THF)[(mu-H)(mu-Et)BEt(2)], 2, are compared with that of the hydride-bridged "tuckover" complex (C(5)Me(5))(2)La(mu-H)(mu-eta(1):eta(5)-CH(2)C(5)Me(4))La(C(5)Me(5)), 3.  相似文献   

12.
Compounds with a gallium-alkaline earth metal bond, [(eta(5)-C(5)Me(5))(2)Ca-Ga(eta(5)-C(5)Me(5))], [(eta(5)-C(5)Me(5))(2)(THF)Sr-Ga(eta(5)-C(5)Me(5))], and [(eta(5)-C(5)Me(5))(2)Ba-{Ga(eta(5)-C(5)Me(5))}(2)], were prepared.  相似文献   

13.
The bis(imido) uranium(VI)-C(5)H(5) and -C(5)Me(5) complexes (C(5)H(5))(2)U(N(t)Bu)(2), (C(5)Me(5))(2)U(N(t)Bu)(2), (C(5)H(5))U(N(t)Bu)(2)(I)(dmpe), and (C(5)H(5))(2)U(N(t)Bu)(2)(dmpe) can be synthesized from reactions between U(N(t)Bu)(2)(I)(2)(L)(x) (L=THF, x=2; L=dmpe, x=1) and Na(C(5)R(5)) (R=H, Me); these complexes represent the first structurally characterized C(5)H(5)-compounds of uranium(VI) and they further highlight the differences between UO(2)(2+) and the bis(imido) fragment.  相似文献   

14.
The transition metal acyl compounds [Co(L)(CO)3(COMe)] (L = PMe3, PPhMe2, P(4-Me-C6H4)3, PPh3 and P(4-F-C6H4)3), [Mn(CO)5(COMe)] and [Mo(PPh3)(eta(5)-C5H5)(CO)2(COMe)] react with B(C6F5)3 to form the adducts [Co(L)(CO)3(C{OB(C6F5)3}Me)] (L = PMe3, 1, PPhMe2, 2, P(4-Me-C6H4)3, 3, PPh3, 4, P(4-F-C6H4)3), 5, [Mn(CO)5(C{OB(C6F5)3}Me)] 6 and [Mo(eta(5)-C5H5)(PPh3)(CO)2(C{OB(C6F5)3}Me)], 7. Addition of B(C6F5)3 to a cooled solution of [Mo(eta(5)-C5H5)(CO)3(Me)], under an atmosphere of CO gave [Mo(eta(5)-C5H5)(CO)3(C{OB(C6F5)3}Me)] 8. In the presence of adventitious water, the compound [Co{HOB(C6F5)3}2{OP(4-F-C6H4)3}2] 9, was formed from [Co(P(4-F-C6H4)3)(CO)3(C{OB(C6F5)3}Me)]. The compounds 4 and 9 have been structurally characterised. The use of B(C6F5)3 as a catalyst for the CO-induced migratory-insertion reaction in the transition metal alkyl compounds [Co(PPh3)(CO)3(Me)], [Mn(CO)5(Me)], [Mo(eta(5)-C5H5)(CO)3(Me)] and [Fe(eta(5)-C5H5)(CO)2(Me)] has been investigated.  相似文献   

15.
The M?ssbauer effect spectra for a series of small [Fe(eta(5)-C(5)H(5))(CO)(x)()] substituted metallaborane complexes are reported, where x = 1 or 2. The pentaborane cage in compounds [Fe(eta(5)-C(5)H(5))(CO)(2)B(5)H(7)P(C(6)H(5))(2)] (1), [Fe(eta(5)-C(5)H(5))(CO)(2)B(5)H(8)] (2), and [(Fe(eta(5)-C(5)H(5))(CO)(2))(2)B(5)H(7)] (3) was found to act as a significantly better donor ligand than the ligands in a comparison group of previously reported [Fe(eta(5)-C(5)H(5))(CO)LX] complexes, where L = CO or PPh(3) and X = halide, pseudohalide, or alkyl ligands. These metallaborane complexes were found to most resemble their silyl analogues in M?ssbauer spectral parameters and the electronic distribution around the iron centers. In addition, the M?ssbauer data showed that the [&mgr;-2,3-(P(C(6)H(5))(2)B(5)H(7)](-) ligand was a superior donor to the corresponding unsubstituted [B(5)H(8)](-) ligand. The M?ssbauer spectral results for the metallaborane complexes studied were found to be in general agreement with the anticipated donor and accepting bonding considerations for the cage ligands based upon their infrared and (11)B NMR spectra and X-ray structural features. The M?ssbauer data for the [Fe(eta(5)-C(5)H(5))(CO)B(4)H(6)(P(C(6)H(5))(2))] (4) and [Fe(eta(5)-C(5)H(5))(CO)B(3)H(7)(P(C(6)H(5))(2))] (5) complexes, in comparison with compound 1, showed that as the borane cage becomes progressively smaller, it becomes a poorer donor ligand. A qualitative relationship was found between the observed M?ssbauer isomer shift data and the number of boron cage vertices for the structurally related [Fe(eta(5)-C(5)H(5))(CO)(x)B(y)H(z)P(C(6)H(5))(2)] complexes, where x = 1 or 2, y = 3-5, and z = 6 or 7. The X-ray crystallographic data for compounds 1, 2, 5, and [Fe(eta(5)-C(5)H(5))(CO)B(5)H(8)] (6) were also found to agree with the trends observed in the M?ssbauer spectra which showed that the s-electron density on the iron nucleus increases in the order 5 < 6 < 2 < 1. The X-ray crystal structure of complex 2 is also reported. Crystallographic data for 2: space group P2(1)/c (No. 14, monoclinic), a = 6.084(3) ?, b = 15.045(8) ?, c = 13.449(7) ?, beta = 99.69(5) degrees, V = 1213(1) ?(3), Z = 4 molecules/cell.  相似文献   

16.
Conversion of N=N=CHSiMe3 to O=C=CHSiMe3 by the radical complexes .Cr(CO)3C5R5 (R = H, CH3) derived from dissociation of [Cr(CO)3(C5R5)]2 have been investigated under CO, Ar, and N2 atmospheres. Under an Ar or N2 atmosphere the reaction is stoichiometric and produces the Cr[triple bond]Cr triply bonded complex [Cr(CO)2(C5R5)]2. Under a CO atmosphere regeneration of [Cr(CO)3(C5R5)]2 (R = H, CH3) occurs competitively and conversion of diazo to ketene occurs catalytically as well as stoichiometrically. Two key intermediates in the reaction, .Cr(CO)2(ketene)(C5R5) and Cr2(CO)5(C5R5)2 have been detected spectroscopically. The complex .Cr(13CO)2(O=13C=CHSiMe3)(C5Me5) has been studied by electron spin resonance spectroscopy in toluene solution: g(iso) = 2.007; A(53Cr) = 125 MHz; A(13CO) = 22.5 MHz; A(O=13C=CHSiMe3) = 12.0 MHz. The complex Cr2(CO)5(C5H5)2, generated in situ, does not show a signal in its 1H NMR and reacts relatively slowly with CO. It is proposed to be a ground-state triplet in keeping with predictions based on high level density functional theory (DFT) studies. Computed vibrational frequencies are also in good agreement with experimental data. The rates of CO loss from 3Cr2(CO)5(C5H5)2 producing 1[Cr(CO)2(C5H5)]2 and CO addition to 3Cr2(CO)5(C5H5)2 producing 1[Cr(CO)3(C5H5)]2 have been measured by kinetics and show DeltaH approximately equal 23 kcal mol(-1) for both processes. Enthalpies of reduction by Na/Hg under CO atmosphere of [Cr(CO)n(C5H5)]2 (n = 2,3) have been measured by solution calorimetry and provide data for estimation of the Cr[triple bond]Cr bond strength in [Cr(CO)2(C5H5)]2 as 72 kcal mol(-1). The complex [Cr(CO)2(C5H5)]2 does not readily undergo 13CO exchange at room temperature or 50 degrees C implying that 3Cr2(CO)5(C5H5)2 is not readily accessed from the thermodynamically stable complex [Cr(CO)2(C5H5)]2. A detailed mechanism for metalloradical based conversion of diazo and CO to ketene and N2 is proposed on the basis of a combination of experimental and theoretical data.  相似文献   

17.
To probe the correlation of unusual (C5Me5)(1-) reactivity with steric crowding in complexes such as (C5Me5)3UMe and (C5Me5)3UCl, slightly less crowded (C5Me5)2(C5Me4H)UX analogues (X = Me, Cl) were synthesized and their reactivity was evaluated. The utility of the cationic precursors [(C5Me5)2UMe](1+), 1, and [(C5Me5)2UCl](1+), 2, in the synthesis of (C5Me5)2(C5Me4H)UMe, 3, and (C5Me5)2(C5Me4H)UCl, 4, was also explored. Since the use of precursor [(C5Me5)2UMe][MeBPh3], 1a, is complicated by the equilibrium between 1a and (C5Me5)2UMe2/BPh3, the reactivity of [(C5Me5)2UMe(OTf)]2, 1b, (OTf = O3SCF3) prepared from (C5Me5)2UMe2 and AgOTf, was also studied. Both 1a and 1b react with KC5Me4H to form 3. Complex 4 readily forms by addition of KC5Me4H to [(C5Me5)2UCl][MeBPh3], generated in situ from (C5Me5)2UMeCl and BPh3. Complex 1b was preferred to 1a for the synthesis of (C5Me5)2(C5H5)UMe, 5, and (C5Me5)2UMe[CH(SiMe3)2], 6, from KC5H5 and LiCH(SiMe3)2, respectively. Complex 6 is the first example of a mixed alkyl uranium metallocene complex. Sterically induced reduction (SIR) reactivity was not observed with 3-6 although the methyl displacements from the (C5Me5)(1-) ring plane for 3 are the closest observed to date to those of SIR-active complexes. The (1)H NMR spectra of 3 and 4 are unusual in that all of the (C5Me4H)(1-) methyl groups are inequivalent. This structural rigidity is consistent with density-functional theory calculations.  相似文献   

18.
Eleven experimentally characterized complexes containing heterobimetallic bonds between elements of the f-block and other elements were examined by quantum chemical methods: [(η(5)-C(5)H(5))(2)(THF)LuRu(η(5)-C(5)H(5))(CO)(2)], [(η(5)-C(5)Me(5))(2)(I)ThRu(η(5)-C(5)H(5))(CO)(2)], [(η(5)-C(5)H(5))(2)YRe(η(5)-C(5)H(5))(2)], [{N(CH(2)CH(2)NSiMe(3))(3)}URe(η(5)-C(5)H(5))(2)], [Y{Ga(NArCh)(2)}{C(PPh(2)NSiH(3))(2)}(CH(3)OCH(3))(2)], [{N(CH(2)CH(2)NSiMe(3))(3)}U{Ga(NArCH)(2)}(THF)], [(η(5)-C(5)H(5))(3)UGa(η(5)-C(5)Me(5))], [Yb(η(5)-C(5)H(5)){Si(SiMe(3))(3)(THF)(2)}], [(η(5)-C(5)H(5))(3)U(SnPh(3))], [(η(5)-C(5)H(5))(3)U(SiPh(3))], and (Ph[Me]N)(3)USi(SiMe(3))(3). Geometries in good agreement with experiment were obtained at the density functional level of theory. The multiconfigurational complete active space self-consistent field method (CASSCF) and subsequent corrections with second order perturbation theory (CASPT2) were applied to further understand the electronic structure of the lanthanide/actinide-metal (or metal-metalloid) bonds. Fragment calculations and energy-decomposition analyses were also performed and indicate that charge transfer occurs from one supported metal fragment to the other, while the bonding itself is always dominated by ionic character.  相似文献   

19.
The reaction of 1-chloro-2-(trimethylsilyl)-1-boracyclohexa-2,5-diene with [(n)Bu(4)N]C≡N provides the 1-borabenzonitrile salt [(n)Bu(4)N][C(5)H(5)BC≡N] which in turn reacts with [Ru(4)(μ-Cl)(4)(η-C(5)Me(5))(4)] to afford the sandwich complex [Ru(η(6)-C(5)H(5)BC≡N)(η-C(5)Me(5))]. The bonding of 1-borabenzonitrile is discussed with recourse to crystallographic data for [(n)Bu(4)N][C(5)H(5)BC≡N] and [Ru(η(6)-C(5)H(5)BC≡N)(η-C(5)Me(5))].  相似文献   

20.
Cl2MeSiSiMeCl2与环戊二烯基锂及对甲苯基溴化镁反应, 生成C5H5(p-Tol)MeSiSiMe(p-Tol)C5H5. 后者再与五羰基铁反应, 得到标题化合物[η5, η5-C5H4(p-Tol)MeSiSiMe(p-Tol)C5H4]Fe2(CO)2(μ-CO)2(3); 同时还得到两个单硅桥连副产物[η5, η5-(p-Tol)2MeSiSiMe(C5H4)2]Fe2(CO)2(μ-CO)2(4)和[η5, η5-(p-Tol)Me2SiSiMe(C5H4)2]Fe2(CO)2(μ-CO)2(5). 化合物3中顺式异构体(3a)占绝对优势, 可通过简单重结晶分离出纯品. 化合物3a在加热条件下发生分子内的硅硅键和铁铁键之间的复分解重排反应, 生成[η5-(p-Tol)MeSiC5H4Fe(CO)2]2(6). 该产物为顺反异构体的混合物(顺反异构体的摩尔比为4:3), 表明重排反应不涉及协同历程. 利用X射线衍射法测定了化合物4的分子结构.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号