共查询到20条相似文献,搜索用时 15 毫秒
1.
We discuss the BCS-BEC crossover in a degenerate Fermi gas of two hyperfine states interacting close to a Feshbach resonance. We show that, by including fluctuation contributions to the free energy similar to that considered by Nozières and Schmitt-Rink, the character of the superfluid phase transition continuously changes from the BCS-type to the BEC-type, as the threshold of the quasimolecular band is lowered. In the BEC regime, the superfluid phase transition is interpreted in terms of molecules associated with both the Feshbach resonance and Cooper pairing. 相似文献
2.
We develop a time-dependent mean-field theory to investigate the released momentum distribution and the released energy of an ultracold Fermi gas in the BCS-BEC crossover after the scattering length has been set to zero by a fast magnetic-field ramp. For a homogeneous gas we analyze the nonequilibrium dynamics of the system as a function of the interaction strength and of the ramp speed. For a trapped gas the theoretical predictions are compared with experimental results. 相似文献
3.
We investigate the crossover from Bardeen-Cooper-Schrieffer (BCS) superfluidity to Bose-Einstein condensation (BEC) in a two-dimensional Fermi gas at T=0 using the fixed-node diffusion Monte?Carlo method. We calculate the equation of state and the gap parameter as a function of the interaction strength, observing large deviations compared to mean-field predictions. In the BEC regime our results show the important role of dimer-dimer and atom-dimer interaction effects that are completely neglected in the mean-field picture. Results on Tan's contact parameter associated with short-range physics are also reported along the BCS-BEC crossover. 相似文献
4.
Ohashi Y 《Physical review letters》2005,94(5):050403
We investigate unconventional superfluidity in a gas of Fermi atoms with an anisotropic p-wave Feshbach resonance. Including the p-wave Feshbach resonance as well as the associated three kinds of quasimolecules with finite orbital angular momenta Lz=+/-1,0, we calculate the transition temperature of the superfluid phase. As one passes through the p-wave Feshbach resonance, we find the usual BCS-BEC crossover phenomenon. The p-wave BCS state continuously changes into the BEC of bound molecules with L=1. Our calculation includes the effect of fluctuations associated with Cooper pairs and molecules which are not Bose condensed. 相似文献
5.
By using the diffusion Monte Carlo method we calculate the one- and two-body density matrix of an interacting Fermi gas at T = 0 in the BCS to Bose-Einstein condensate (BEC) crossover. Results for the momentum distribution of the atoms, as obtained from the Fourier transform of the one-body density matrix, are reported as a function of the interaction strength. Off-diagonal long-range order in the system is investigated through the asymptotic behavior of the two-body density matrix. The condensate fraction of pairs is calculated in the unitary limit and on both sides of the BCS-BEC crossover. 相似文献
6.
We study the short-time dynamics of a degenerate Fermi gas positioned near a Feshbach resonance following an abrupt jump in the atomic interaction resulting from a change of magnetic field. We investigate the dynamics of the condensate order parameter and pair wave function for a range of field strengths. When the jump is sufficient to span the BCS to Bose-Einstein condensation crossover, we show that the rigidity of the momentum distribution precludes any atom-molecule oscillations in the entrance channel dominated resonances observed in 40K and 6Li. Focusing on material parameters tailored to the 40K Feshbach resonance at 202.1 G, we comment on the integrity of the fast sweep projection technique as a vehicle to explore the condensed phase in the crossover region. 相似文献
7.
We consider the BCS-BEC (Bose-Einstein-condensate) crossover for a system of trapped Fermi atoms at finite temperature, both below and above the superfluid critical temperature, by including fluctuations beyond mean field. We determine the superfluid critical temperature and the pair-breaking temperature as functions of the attractive interaction between Fermi atoms, from the weak- to the strong-coupling limit (where bosonic molecules form as bound-fermion pairs). Density profiles in the trap are also obtained for all temperatures and couplings. 相似文献
8.
基于耦合流体力学方程组,分别研究了各向同性和各向异性轴对称势阱下Bardeen-CooperSchrieffer–Bose-Einstein condensate(BCS-BEC)渡越过程中超流费米气体的Efimovian膨胀.当费米气体处于幺正极限,体系标度不变,气体膨胀尺寸展现出一系列平台结构,气体的演化由对数周期函数描述;当费米气体处于非幺正极限超流区域,体系标度不变性破缺,气体的演化偏离对数周期变化;另外我们还发现对于各向异性的费米气体,即使处于幺正极限,谐振子势的各向异性也会导致体系标度不变性破缺. 相似文献
9.
We present a measurement of the potential energy of an ultracold trapped gas of 40K atoms in the BCS-BEC crossover and investigate the temperature dependence of this energy at a wide Feshbach resonance, where the gas is in the unitarity limit. In particular, we study the ratio of the potential energy in the region of the unitarity limit to that of a noninteracting gas, and in the T=0 limit we extract the universal many-body parameter beta. We find beta=-0.54_{-0.12};{+0.05}; this value is consistent with previous measurements using 6Li atoms and also with recent theory and Monte Carlo calculations. This result demonstrates the universality of ultracold Fermi gases in the strongly interacting regime. 相似文献
10.
X. S. Yang B. B. Huang S. L. Wan 《The European Physical Journal B - Condensed Matter and Complex Systems》2011,83(4):445-450
We investigate a mix-dimensional Fermi-Fermi mixtures in which one species is confined
in two-dimensional (2D) space while the other is free in three-dimensional space (3D). We
determine the superfluid transition temperature
T
c
for the entire BCS-BEC crossover
including the important effects of noncondensed pairs. We find that the transition
temperature reduces while the imbalance of mass is increased or lattice spacing is
reduced. In spin imbalance case, the stability of superfluid is sharply destroyed by
increasing the polarization. 相似文献
11.
In order to clarify the structure of a singly quantized vortex in a superfluid fermion gas near the Feshbach resonance, we numerically solve the generalized Bogoliubov-de Gennes equation in the boson-fermion model. The superfluid gap, which contains contributions from both condensed fermion pairs and condensed bosons, is self-consistently determined, and the quasiparticle excitation levels bound in the vortex core are explicitly shown. We find that the boson condensate contributes to enhance the matter density depletion and the discreteness of localized quasiparticle spectrum inside the core. It is predicted that the matter density depletion and the discrete core levels are detectable in the vicinity of the BCS-Bose-Einstein condensation crossover point. 相似文献
12.
Evolution of the vortex state in the BCS-BEC crossover of a quasi two-dimensional superfluid Fermi gas 下载免费PDF全文
We use the path-integral formalism to investigate the vortex properties of a quasi-two dimensional(2D) Fermi superfluid system trapped in an optical lattice potential.Within the framework of mean-field theory,the cooper pair density,the atom number density,and the vortex core size are calculated from weakly interacting BCS regime to strongly coupled while weakly interacting BEC regime.Numerical results show that the atoms gradually penetrate into the vortex core as the system evolves from BEC to BCS regime.Meanwhile,the presence of the optical lattice allows us to analyze the vortex properties in the crossover from three-dimensional(3D) to 2D case.Furthermore,using a simple re-normalization procedure,we find that the two-body bound state exists only when the interaction is stronger than a critical one denoted by G_c which is obtained as a function of the lattice potential's parameter.Finally,we investigate the vortex core size and find that it grows with increasing interaction strength.In particular,by analyzing the behavior of the vortex core size in both BCS and BEC regimes,we find that the vortex core size behaves quite differently for positive and negative chemical potentials. 相似文献
13.
T. L. Song Y. L. Ma 《The European Physical Journal B - Condensed Matter and Complex Systems》2011,82(3-4):303-311
The ground state of a three-dimensional (3D) rotating trapped superfluid Fermi gas in the BCS-BEC crossover is mapped to finite N v -body vortex states by a simple ansatz. The total vortex energy is measured from the ground-state energy of the system in the absence of the vortices. The vortex state is stable since the vortex potential and rotation energies are attractive while the vortex kinetic energy and interaction between vortices are repulsive. By combining the analytical and numerical works for the minimal vortex energy, the 2D configurations of N v vortices are studied by taking into account of the finite size effects both on xy-plane and on z-direction. The calculated vortex numbers as a function of the interaction strength are appropriate to the renew experimental results by Zwierlein in [High-temperature superfluidity in a ultracold Fermi gas, Ph.D. thesis, Massachusetts Institute of Technology, 2006]. The numerical results show that there exist two types of vortex structures: the trap center is occupied and unoccupied by a vortex, even in the case of N v < 10 with regular polygon and in the case of N v ≥ 10 with finite triangle lattice. The rotation frequency dependent vortex numbers with different interaction strengths are also discussed. 相似文献
14.
We observe characteristic atomic behaviors in the Bose-Einstein-condensation-Bardeen-Cooper-Schrieffer(BEC-BCS)crossover,by accurately tuning the magnetic field across the Feshbach resonance of lithium atoms.The magnetic field is calibrated by measuring the Zeeman shift of the optical transition.A non-monotonic anisotropic expansion is observed across the Feshbach resonance.The density distribution is explored in different interacting regimes,where a condensate of diatomic molecules forms in the BEC limit with the indication of a bimodal distribution.We also measure the three-body recombination atom loss in the BEC-BCS crossover,and find that the magnetic field of the maximum atom loss is in the BEC limit and gets closer to the Feshbach resonance when decreasing the atom temperature,which agrees with previous experiments and theoretical prediction.This work builds up a controllable platform for the study on the strongly interacting Fermi gas. 相似文献
15.
We calculate the momentum distribution n(k) of the unitary Fermi gas by using quantum Monte Carlo calculations at finite temperature T/?(F) as well as in the ground state. At large momenta k/k(F), we find that n(k) falls off as C/k?, in agreement with the Tan relations. From the asymptotics of n(k), we determine the contact C as a function of T/?(F) and present a comparison with theory. At low T/?(F), we find that C increases with temperature, and we tentatively identify a maximum around T/?(F) ? 0.4. Our calculations are performed on lattices of spatial extent up to N(x) = 14 with a particle number per unit volume of ? 0.03-0.07. 相似文献
16.
We present a systematic theoretical study of the BCS-BEC crossover in two-dimensional Fermi gases with Rashba spin-orbit coupling (SOC). By solving the exact two-body problem in the presence of an attractive short-range interaction we show that the SOC enhances the formation of the bound state: the binding energy E(B) and effective mass m(B) of the bound state grows along with the increase of the SOC. For the many-body problem, even at weak attraction, a dilute Fermi gas can evolve from a BCS superfluid state to a Bose condensation of molecules when the SOC becomes comparable to the Fermi momentum. The ground-state properties and the Berezinskii-Kosterlitz-Thouless (BKT) transition temperature are studied, and analytical results are obtained in various limits. For large SOC, the BKT transition temperature recovers that for a Bose gas with an effective mass m(B). We find that the condensate and superfluid densities have distinct behaviors in the presence of SOC: the condensate density is generally enhanced by the SOC due to the increase of the molecule binding; the superfluid density is suppressed because of the nontrivial molecule effective mass m(B). 相似文献
17.
The 2D resonant Fermi gas with p-wave pairing is considered n the BCS-BEC regime. For the 2D analog of the superfluid A1 phase, the Leggett equations [1] for superfluid gap Δ and chemical potential μ are analytically solved at T = 0 and the spectrum of the collective excitations (acoustic waves) is analyzed in the BCS regime (μ > 0), where the triplet Cooper pairs emerge; in the BEC regime (μ < 0), where the triplet local pairs (molecules) emerge; and in the transition region, where μ → 0. At low temperatures, the contribution of the superfluid Fermi quasiparticles of the resonant gas to heat capacity C v and the density of normal component ρn is also calculated. At μ = 0, the fermionic contribution to ρn and C v are represented as power functions of temperature (ρn ~ T 3 and C v ~ T 2). However, similar power contributions to these quantities are related to phonons (bosonic acoustic oscillations). The possibility of the experimental observation of the nontrivial topological term with the charge Q = 1 in the BCS regime of the 2D A1 phase is briefly discussed. 相似文献
18.
A. V. Turlapov 《JETP Letters》2012,95(2):96-103
A rapidly developing field, experimental physics of ultracold gases of Fermi atoms, is briefly reviewed. The contribution
of this field to fundamental physics is shown along with connection to other fields which explore systems of Fermi particles.
The basic parameters of atomic Fermi gas are described together with its unique properties and advantages and disadvantages
in comparison to other Fermi systems. The prospects of this field and its short history are considered. Research groups working
in this field are listed. 相似文献
19.
We evaluate the frequencies of collective modes and the anisotropic expansion rate of a harmonically trapped Fermi superfluid at varying coupling strengths across a Feshbach resonance driving a BCS-BEC crossover. The equations of motion for the superfluid are obtained from a microscopic mean-field expression for the compressibility and are solved within a scaling ansatz. Our results confirm nonmonotonic behavior in the crossover region and are in quantitative agreement with current measurements of the transverse breathing mode by Kinast et al. [Phys. Rev. Lett. 92, 150402 (2004)]] and of the axial breathing mode by Bartenstein et al. [Phys. Rev. Lett. 92, 203201 (2004)]]. 相似文献
20.
We measure excitation spectra of an ultracold gas of fermionic (40)K atoms in the BCS-Bose-Einstein-condensation (BEC) crossover regime. The measurements are performed with a novel spectroscopy that employs a small modulation of the B field close to a Feshbach resonance to give rise to a modulation of the interaction strength. With this method we observe both a collective excitation as well as the dissociation of fermionic atom pairs in the strongly interacting regime. The excitation spectra reveal the binding energy or excitation gap for pairs in the crossover region. 相似文献